BENDING

- ELASTICITY VERSUS PLASTICITY
 - FULLY PLASTIC MOMENT
 - SHAPE FACTOR
 - EXAMPLES

- BEHAVIOUR OF THE CROSS SECTION
 - MOMENT-CURVATURE
 - PLASTIC ZONES
 - IDEAL PLASTIC HINGE

- STRUCTURAL BEHAVIOUR (LIMIT ANALYSIS)
 - BEAMS
 - FRAMES
M-κ BEHAVIOUR OF THE CROSS SECTION

moment

\[M_p \]

\[M_e \]

curvature \(\kappa \)

elastic

elasto-plastic

plastic
MOMENT-CURVATURE

ELASTIC:

\[
\frac{1}{2} h \quad \text{y-as} \quad \frac{1}{2} h
\]

cross section

\[
\kappa \quad \varepsilon_y = \kappa_e \frac{1}{2} h
\]

strain-diagram

\[
\sigma = f_y
\]

stress-diagram

\[
\frac{M}{W} \Rightarrow M = W\sigma
\]

start with:

\[
M_e = Wf_y
\]

thus:
MOMENT-CURVATURE

ELASTO PLASTIC:

\[\frac{1}{2} \left(\frac{1}{2} h - \frac{1}{2} a \right) + \frac{1}{2} a = \frac{1}{4} (h + a) \]

\[\frac{1}{2} f_y b (h - a) \]

\[\frac{1}{2} f_y b \frac{1}{2} a = \frac{1}{4} f_y ab \]

\[M = \frac{1}{6} f_y b a^2 + \frac{1}{2} f_y b (h - a) \times 2 \times \frac{1}{4} (h + a) = \frac{1}{4} b h^2 \left(1 - \frac{a^2}{3h^2} \right) \times f_y \]
MOMENT – CURVATURE

\[M = \frac{1}{4} bh^2 \left(1 - \frac{a^2}{3h^2} \right) \times f_y \]

\[M_e = \frac{1}{6} bh^2 \times f_y \]

\[\frac{M}{M_e} = \left(1,5 - \frac{a^2}{2h^2} \right) = 1,5 - \frac{1}{2} \left(\frac{\kappa_e}{\kappa} \right)^2 \]
MOMENT - CURVATURE
For rectangular cross sections

Elasto-plastic:
\[
\frac{M}{M_e} = 1,5 - \frac{1}{2} \left(\frac{\kappa_e}{\kappa} \right)^2
\]
PLASTIC ZONE IN THE BEAM

stress in critical cross section due to increasing load

$1 = \text{elastic}$
$2 = \text{elastic limit } = M_e$
$3 = \text{elasto plastic}$
$4 = \text{elasto plastic}$
$5 = \text{fully plastic } = M_p$

\[\frac{1}{4} F_{\text{max}} l = M_p \quad \Rightarrow \quad F_{\text{max}} = F_p = \frac{4M_p}{l} \]
PLASTIC ZONE

\[p = \frac{\alpha - 1}{\alpha} l \]

\[\alpha = \frac{M_p}{M_e} \]
DEVELOPMENT OF CROSS SECTION IN FULL PLASTICITY, STATICALLY DETERMINATE SYSTEM CHANGES INTO A MECHANISM DUE TO THE PRESENCE OF THE PLASTIC HINGE

FAILURE MECHANISM
MODEL FOR THE LIMIT STATE ANALYSIS

- All deformation concentrated in plastic hinges
- Failure whenever a mechanism occurs: failure mechanism
EXAMPLES

Statically determinate
\(n = 0 \)

Statically indeterminate
\(n = 2 \)

Kinematically indeterminate (mechanism)
\(n = -1 \)
INCREMENTAL ANALYSIS

\[
\frac{q}{\left(\frac{M_p}{l^2}\right)}
\]

\[
\frac{w_c}{\left(\frac{M_p l^2}{96EI}\right)}
\]

clamp beam

beam