

Faculty Civil Engineering and GeoSciences

8 8						
Exam	CIE4190					
	Slender Structures					
Total number of pages	8 pages (excl cover)					
Date and time	NOV-08-2017 from 13:30-16:30					
Responsible lecturer	J.W. Welleman					
	wers written on examination paper will be assessed, wise specified under 'Additional Information'.					
Exam questions (to be filled in by	/ course examiner)					
Total number of questions: 4						
Image: questions may differ in weight (the time mentioned is an indicator for the weight)						
Use of tools and sources of info	prmation (to be filled in by course examiner)					
Not allowed:						
• Mobile phone, smart Phone	or devices with similar functions.					

- Answers written with <u>red pen</u> or with <u>pencils</u>.
- Calculators with CAS and/or wifi/BT and/or PDF capabilities
- Tools and/or sources of information <u>unless otherwise specified below</u>.

Allowed:

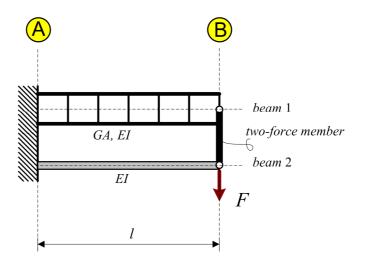
□ books	□ notes	□ dictionaries	🗆 syllabus	
□ formula sh	eets (see also	below under 'addition	nal information')	⊠ calculators
□ computer	□			

⊠ scientific (graphical)calculator ⊠ drawing material

Additional information (if necessary to be filled in by the examiner)

- Use for each problem a separate examination paper
- The question form contains fomula sheets which can be used.
- Students can take the question form home after the exam.
- No student leaves without delivering an exam paper with a name on it!

Exam graded by: (the marking period is 15 working days at most)



Every suspicion of fraud is reported to the Board of Examiners.

Mobile Phone OFF.

Problem 1 : Elementary cases and load carrying systems (45 min)

In figure 1 a structure is shown which consists of two linked beams. The beams are both fully fixed at the support A. The two beams are linked to each other by a rigid *two-force* member at B. The structure is loaded at B by a concentrated load F. The axial deformation is not taken into account.

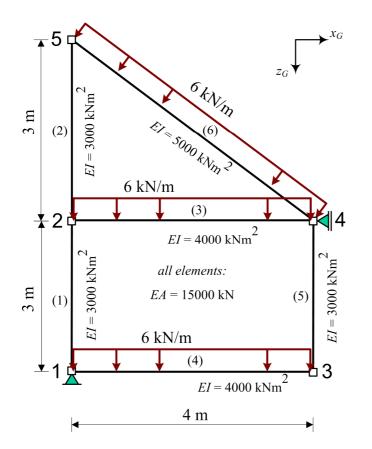
Figure 1 : Linked beams

NOTE:

Only describe the required relations to obtain the governing equations. You do not have to prove obvious prerequisite knowledge such as $A = \int_{A} dA$; $S = \int_{A} z dA$; $I = \int_{A} z^2 dA$; etc.

Questions:

- a) Which of the two beams 1 and or 2 is also referred to as a Navier beam?
- b) Describe the behavior of each of the two beams and derive the required equations/relations to find the displacement field for each beam in its current situation. (introduce a coordinate system and the expressions used and explain them briefly)
- c) Find, based upon your answer under b) an expression for the normal force in the rigid *two-force* link which connects the two beams and investigate the result for different values of the stiffness parameters of the beams.
- d) Find the relation between the load F and the displacement at its point of application.
- e) Derive this latter result also based upon a similar model with discrete springs and explain all steps involved.


Problem 2 : Matrix Method

(45 min)

A frame structure as shown in figure 2 has been analysed with the Matrix Method. Use the specified numbers for the nodes and elements from figure 2. For educational reasons the structure is only supported at node 1 with a pin and at node 4 with a pinned roller.

The horizontal degree of freedom at node 4 is connected to the stiffness components of the system stiffness matrix row according to :

[0 0 0 -3750 0 0 -1333.333 0 2000 7176.133 1209.600 1280 -2092.800 -1209.600 -720]

From the analysis the following results have been obtained:					
DOF	DISPL	ACEMENTS			
dof	1	0			
dof	2	0			
dof	3	00839			
dof	4	.00455			
dof	5	.00890			
dof	6	00608			
dof	7	00430			
dof	8	.04951			
dof	9	00604			
dof	10	0			
dof	11	.05021			
dof	12	00489			
dof	13	.02574			
dof	14	.01250			
dof	15	01096			

NOTE:

All elements (*e*) have their local beam axis running from the lowest nodal number *i* to the highest nodal number *j*. Possible degrees of freedom are counted from node 1 in order of *x*, *z* and φ . If needed use the formula sheet.

Figure 2 : Frame structure

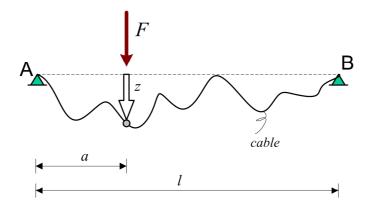
Questions:

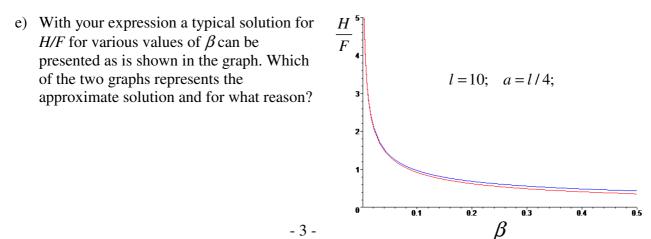
- a) Describe in a few lines the essence of the approach according to the Matrix Method. You can use this problem as an example to support your description. Clearly show how the unknowns in this method are handled.
- b) Specify the input for the element loads (per element) and explain your answer briefly.
- c) Set up the system load vector and show all steps required to obtain this vector.
- d) Find the support reaction at node 4 with the specified data and check this result.
- e) Show the origin of the stiffness components -3750 and 2000 from the specified data line of the system stiffness matrix and check its number.

Problem 3 : Cable

(45 min)

A cable with a specific length is loaded with a single concentrated vertical load as shown in figure 3. The length of the cable is fixed to $(1+\beta)l$ in which β is a positive number. The deformation of the cable due to axial loading is neglected.

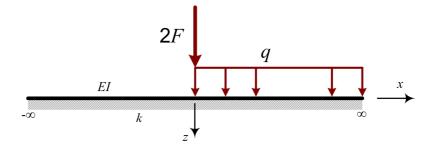



Figure 3 : Cable

An exact solution for this situation results in a "simple" expression for the horizontal component H of the force in the cable :

$$H = \frac{2(1+\beta)}{\sqrt{-8a^2\beta - 4a^2\beta^2 + 8al\beta + 4al\beta^2 + 4l^2\beta^2 + 4l^2\beta^3 + l^2\beta^4}} \frac{Fa(l-a)}{l}$$

Questions:


- a) "In case of multiple concentrated loads on this cable, the expression given can be used to find the equilibrium position of the cable since in this case H is linear related to F." What is your professional opinion on this statement, support your answer if needed with a sketch.
- b) Find for the presented load case, the exact expression for *z*.
- c) Explain how the expression shown for H can be found. Use the parameters shown, make sure all required equations are explained but do not solve these to obtain the presented expression (you can do that at home ...)
- d) Find an alternative (approximate) expression for *H* by using simplifications which are common use in cable analysis.

Problem 4 : Continuous elastic supports

(45 min)

A beam on an elastic foundation is loaded with a concentrated load 2F and a distributed load q for x > 0 only as can be depicted from figure 4.

Given : $EI = 5000 \text{ kNm}^2$; $k = \frac{625}{8}\pi^4$; F = 100 kN; q = 5 kN/m;

Figure 4 : Beam on an elastic foundation

NOTE:

Only describe the required relations to obtain the governing equations. You do not have to prove obvious prerequisite knowledge such as $A = \int_{A} dA$; $S = \int_{A} z dA$; $I = \int_{A} z^2 dA$; etc.

Questions:

a) Derive the governing ODE for an Euler-beam on an elastic foundation. Show clearly the effect of the distributed load in all equations.

Let us assume that we all know the nature of the homogeneous solution for this ODE as: $w_h(x) = e^{-\beta x} (C_1 \cos \beta x + C_2 \sin \beta x) + e^{\beta x} (C_3 \cos \beta x + C_4 \sin \beta x)$

- b) Find the "wave length" of this beam and explain its meaning.
- c) Find the solution for the displacement w at x = 0. Explain your solution strategy and support this with sketches.
- d) Find the solution for the moment M at x = 0. Explain your solution strategy and support this with sketches.
- e) Find the bending moment M at x = 4.0 m. Explain your solution strategy and support this with sketches.

FORMULAS

Temperature:

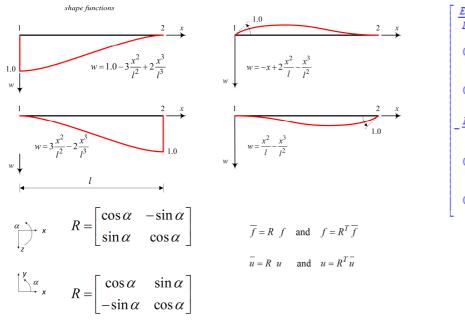
$$N = EA(\varepsilon - \varepsilon^{T}); \qquad M = EI(\kappa - \kappa^{T})$$
$$\varepsilon^{T} = \frac{\alpha}{A} \int_{A} T(x, z) dA; \quad \kappa^{T} = \frac{\alpha}{I} \int_{A} zT(x, z) dA$$

Stress distributions in beams:

$$\sigma(z) = \frac{N}{A} + \frac{Mz}{I}$$

$$\tau(z) = \frac{6V(\frac{1}{4}h^2 - z^2)}{bh^3} \quad \text{rectangular} \text{crosssections}$$

Arch:


$$H = -\frac{\int\limits_{arch} \frac{M^{a}z}{EI} dx}{\int\limits_{arch} \frac{z^{2}}{EI} dx + \frac{l}{EA}}$$

Cable:

$$H^{2} = \frac{q^{2}l^{3}}{24\Delta};$$

$$f = \sqrt{\frac{3}{8}l\Delta} \text{ or } \Delta = \frac{8f^{2}}{3l}$$

Matrix Methods

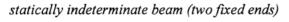
$\left[\frac{EA}{L} \right]$	0	0	$-\frac{EA}{L}$	0	0
0	$\frac{12 EI}{L^3}$	$-\frac{6 EI}{L^2}$	0	$-\frac{12 EI}{L^3}$	$-\frac{6 EI}{L^2}$
0	$-\frac{6 EI}{L^2}$	$\frac{4 EI}{L}$	0	$\frac{6 EI}{L^2}$	$\frac{2 EI}{L}$
$-\frac{EA}{L}$	0	0	$\frac{EA}{L}$	0	0
0	$-\frac{12 EI}{L^3}$	$\frac{6 EI}{L^2}$	0	$\frac{12 EI}{L^3}$	$\frac{6 EI}{L^2}$
0	$-\frac{6 EI}{L^2}$	$\frac{2 EI}{L}$	0	$\frac{6 EI}{L^2}$	$\frac{4 EI}{L}$

Math tools:

$$y = Ae^{-\beta x} \sin(\beta x + \omega) \qquad \qquad \int \sqrt{1 + x^2} dx \approx \int \left[1 + \frac{1}{2} \left(\frac{dz}{dx}\right)^2\right] dx$$
$$\frac{dy}{dx} = -\sqrt{2}\beta Ae^{-\beta x} \sin(\beta x + \omega - \frac{1}{4}\pi) \qquad \qquad \int \sqrt{1 + x^2} dx \approx \int \left[1 + \frac{1}{2} \left(\frac{dz}{dx}\right)^2\right] dx$$
$$\frac{d^2 y}{dx^2} = 2\beta^2 Ae^{-\beta x} \sin(\beta x + \omega - \frac{1}{2}\pi)$$
$$\frac{d^3 y}{dx^3} = -2\sqrt{2}\beta^3 Ae^{-\beta x} \sin(\beta x + \omega - \frac{3}{4}\pi)$$

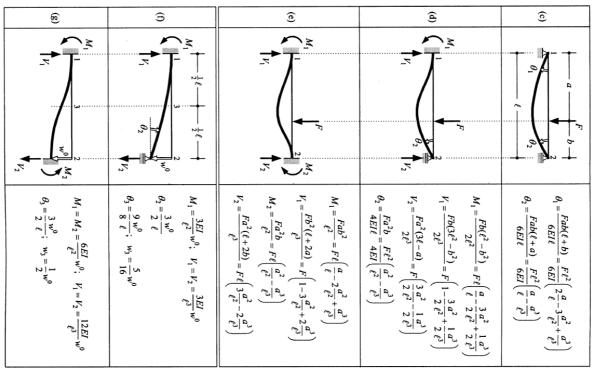
catenary solution:

$$z = -\frac{H}{q}\cosh\left(-\frac{qx}{H} + C_1\right) + C_2$$


y z z	$y \rightarrow b$ $z \rightarrow z$ $z \rightarrow z$	$\overline{y} \xrightarrow{y} \xrightarrow{y} \xrightarrow{y} \xrightarrow{y} \xrightarrow{z} \xrightarrow{z}$	$ \frac{\overline{y}}{y} \underbrace{c}_{z} \underbrace{c}_{z} \underbrace{c}_{h} \underbrace{c}_{h} \underbrace{c}_{z} \underbrace{c}_{h} \underbrace{c}_{h} \underbrace{c}_{z} \underbrace{c}_{h} \underbrace{c}_{h$	$ \begin{array}{c} \overline{y} \leftarrow b \rightarrow \\ y \leftarrow C \\ z \\ z \\ \overline{z} \\ \overline{z} \end{array} \right) $	Figure
Circle $A = \pi R^2$	Trapezium $A = \frac{1}{2}(a+b)h$ $\overline{z}_{\rm C} = \frac{1}{3}\frac{a+2b}{a+b}h$	Triangle $A = \frac{1}{2}bh$ $\overline{y}_{C} = \frac{1}{3}(2a - b)$ $\overline{z}_{C} = \frac{2}{3}h$	Parallelogram A = bh $\overline{y}_{C} = \frac{1}{2}(a+b)$ $\overline{z}_{C} = \frac{1}{2}h$	Rectangle A = bh $\overline{y}_{C} = \frac{1}{2}b$ $\overline{z}_{C} = \frac{1}{2}h$	Area, coordinates centroid C
$I_{yy} = I_{zz} = \frac{1}{4}\pi R^4$ $I_{yz} = 0$ $I_p = \frac{1}{2}\pi R^4$	$I_{zz} = \frac{1}{36} \frac{a^2 + 4ab + b^2}{a + b} h^3$	$I_{yy} = \frac{1}{36}(a^2 - ab + b^2)bh$ $I_{zz} = \frac{1}{36}bh^3$ $I_{yz} = \frac{1}{72}(2a - b)bh^2$	$I_{yy} = \frac{1}{12} (a^2 + b^2)bh$ $I_{zz} = \frac{1}{12} bh^3$ $I_{yz} = \frac{1}{12} abh^2$	$I_{yy} = \frac{1}{12}b^3h$ $I_{zz} = \frac{1}{12}bh^3$ $I_{yz} = 0$	Second moments of area centroidal othe
$I_{\overline{y}\overline{y}} = I_{\overline{z}\overline{z}} = \frac{5}{4}\pi R^4$ $I_{\overline{y}\overline{z}} = \pi R^4$	$I_{\overline{zz}} = \frac{1}{12}(a+3b)h^3$ $I_{\overline{z\overline{z}}} = \frac{1}{12}(3a+b)h^3$	$I_{\overline{z}\overline{z}} = \frac{1}{4}bh^3$ $I_{\overline{y}\overline{z}} = \frac{1}{8}(2a-b)bh^2$ $I_{\overline{z}\overline{z}} = \frac{1}{12}bh^3$	$I_{\overline{z}\overline{z}} = \frac{1}{3}bh^3$	$I_{\overline{y}\overline{y}} = \frac{1}{3}b^3h$ $I_{\overline{z}\overline{z}} = \frac{1}{3}bh^3$ $I_{\overline{y}\overline{z}} = \frac{1}{4}b^2h^2$	nents of area other

$\overline{y} \xrightarrow{\mathcal{Y}} R \xrightarrow{\mathcal{Y}} R$	$\overline{y} \leftarrow R + R + R + T$ $\overline{y} \leftarrow C \qquad T$ $z; \overline{z}$	y y z z z	V R C Z	Figure
Semicircular ring $A = \pi Rt$ $\overline{y}_{C} = 0$ $\overline{z}_{C} = \frac{2}{\pi}R$ = 0.637R	Semicircle $A = \frac{1}{2}\pi R^2$ $\overline{y}_C = 0$ $\overline{z}_C = \frac{4}{3\pi}R$ = 0.424R	Thin-walled ring $A = 2\pi Rt$	Thick-walled ring $A = \pi (R_e^2 - R_i^2)$	Area, coordinates centroid C
$I_{yy} = \frac{1}{2}\pi R^3 t$ $I_{zz} = (\frac{\pi}{2} - \frac{4}{\pi})R^3 t$ $= 0.298R^3 t$ $I_{yz} = 0$	$I_{yy} = \frac{1}{8}\pi R^4 = 0.393R^4$ $I_{zz} = (\frac{\pi}{8} - \frac{8}{9\pi})R^4$ $= 0.110R^4$ $I_{yz} = 0$	$I_{yy} = I_{zz} = \pi R^3 t$ $I_{yz} = 0$ $I_p = 2\pi R^3 t$	$I_{yy} = I_{zz} = \frac{1}{4}\pi(R_{e}^{4} - R_{i}^{4})$ $I_{yz} = 0$ $I_{p} = \frac{1}{2}\pi(R_{e}^{4} - R_{i}^{4})$	Second moments of area centroidal othe
$I_{\overline{yy}} = I_{\overline{zz}} = \frac{1}{2}\pi R^3 t$ $I_{\overline{yz}} = 0$	$I_{\overline{yy}} = I_{\overline{zz}} = \frac{1}{8}\pi R^4$ $I_{\overline{yz}} = 0$	$I_{\overline{yy}} = I_{\overline{zz}} = 3\pi R^3 t$		ients of area other

(a)	(6)	(5)	(4)	(3)	(2)	(I)
	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \theta_1 $	θ_1 θ_2 θ_1 θ_2 θ_2	$ \begin{array}{c} + \frac{1}{2} \ell - \frac{1}{2} \ell - \frac{1}{2} \ell - \frac{1}{2} r \\ + \frac{3}{\theta_1} + \frac{3}{\theta_2} + \frac{2}{\theta_2} \end{array}\right) $	$\frac{\sqrt{q}}{1}$	r	$\begin{array}{c} \ell \\ I \\$
$\theta_1 = \theta_2 = \frac{1}{24} \frac{T\ell}{EI}; \theta_3 = \frac{1}{12} \frac{T\ell}{EI}; w_3 = 0$	$ \theta_1 = \theta_2 = \frac{1}{24} \frac{q\ell^3}{EI}; w_3 = \frac{5}{384} \frac{q\ell^4}{EI} $	$\theta_1 = \theta_2 = \frac{1}{16} \frac{F\ell^2}{EI}; w_3 = \frac{1}{48} \frac{F\ell^3}{EI}$	$\theta_1 = \frac{1}{6} \frac{T\ell}{EI}; \theta_2 = \frac{1}{3} \frac{T\ell}{EI}; w_3 = \frac{1}{16} \frac{T\ell^2}{EI}$	$ \theta_2 = \frac{q\ell^3}{6EI}; w_2 = \frac{q\ell^4}{8EI} $	$\theta_2 = \frac{F\ell^2}{2EI}; w_2 = \frac{F\ell^3}{3EI}$	$\theta_2 = \frac{T\ell}{EI}; w_2 = \frac{T\ell^2}{2EI}$


simply supported beam (statically determinate)

forget-me-nots

statically indeterminate beam (one fixed end)

	,	o jineu enubj		minute ocum (one	Jineu enuy
(6)	(11)	(10)	(9)	(8)	(7)
		$\begin{pmatrix} M_1 \\ M_1 \\ M_3 \end{pmatrix} = \begin{pmatrix} F \\ F \\ F \\ F \\ F \\ F \\ F \end{pmatrix}$	$\begin{pmatrix} M_1 & Q & q \\ & Q & Q$	$\begin{pmatrix} M_1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$M_{1} \leftarrow \frac{1}{2} \ell \leftarrow \frac{1}{2} $
			2	2	
$\theta_3 = \frac{1}{16} \frac{T\ell}{EI}; w_3 = 0$ $M_1 = M_2 = \frac{1}{4}T; V_1 = V_2 = \frac{3}{2} \frac{T}{\ell}$	$w_3 = \frac{1}{384} \frac{q\ell^4}{EI}$ $M_1 = M_2 = \frac{1}{12} q\ell^2; V_1 = V_2 = \frac{1}{2} q\ell$	$w_3 = \frac{1}{192} \frac{F\ell^3}{EI}$ $M_1 = M_2 = \frac{1}{8}F\ell; V_1 = V_2 = \frac{1}{2}F$	$\theta_2 = \frac{1}{48} \frac{q\ell^3}{EI}; w_3 = \frac{1}{192} \frac{q\ell^4}{EI}$ $M_1 = \frac{1}{8} q\ell^2; V_1 = \frac{5}{8} q\ell; V_2 = \frac{3}{8} q\ell$	$\theta_2 = \frac{1}{32} \frac{F\ell^2}{EI}; w_3 = \frac{7}{768} \frac{F\ell^3}{EI}$ $M_1 = \frac{3}{16} F\ell; V_1 = \frac{11}{16} F; V_2 = \frac{5}{16} F$	$\theta_2 = \frac{1}{4} \frac{T\ell}{EI}; w_3 = \frac{1}{32} \frac{T\ell^2}{EI}$ $M_1 = \frac{1}{2}T; V_1 = V_2 = \frac{3}{2} \frac{T}{\ell}$

settlements

support reactions and rotations at the beam ends

6	(5)	(4)	(3)	(2)	(1)
$\begin{array}{c} y \\ h_1 \\ \hline \\ h_2 \\ \hline \\ x_C \\ \hline \\ b \\ \hline \\ b \\ \hline \\ \\ b \\ \hline \\ \\ x \\ \end{array}$	$\sum_{i=1}^{n} \frac{c_{i}}{b_{i}} + \frac{1}{2}b_{i} + \frac{1}{2}b_{i} + \frac{1}{2}b_{i}$	$ \begin{array}{c} $	$ \begin{array}{c} y \\ h \\ \hline t \\ + \frac{1}{4}b \\ + \frac{3}{4}b \\ \hline \end{array} \xrightarrow{vertex} x $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	$ \begin{array}{c} $
trapezium: $y = h_1 + (h_2 - h_1)\frac{x}{b}$ $A = \frac{1}{2}b(h_1 + h_2)$ $x_C = \frac{1}{3}b\frac{h_1 + 2h_2}{h_1 + h_2}$	parabola: $A = \frac{2}{3}bh$ $x_{\rm C} = \frac{1}{2}b$	parabola: $y = h \left\{ 1 - \left(\frac{x}{b}\right)^2 \right\}$ $A = \frac{2}{3}bh$ $x_C = \frac{3}{8}b$	parabola: $y = h \left\{ 1 - \frac{x}{b} \right\}^2$ $A = \frac{1}{3}bh$ $x_C = \frac{1}{4}b$	triangle: $y = h \left\{ 1 - \frac{x}{b} \right\}$ $A = \frac{1}{2}bh$ $x_{\rm C} = \frac{1}{3}b$	rectangle: $y = h$ A = bh $x_{\rm C} = \frac{1}{2}b$

properties of plane figures to be used for the moment-area theorems