

Faculty Civil Engineering and GeoSciences

Exam	CIE4190					
	Slender Structures					
Total number of pages	8 pages (excl cover)					
Date and time	NOV-7-2018 from 13:30-16:30					
Responsible lecturer	J.W. Welleman					
Only the work / answers written on examination paper will be assessed, unless otherwise specified under 'Additional Information'.						
Exam questions (to be filled in b	y course examiner)					
Total number of questions: 4						

I questions may differ in weight (the time mentioned is an indicator for the weight)

Use of tools and sources of information (to be filled in by course examiner)

Not allowed:

- Mobile phone, smart Phone or devices with similar functions.
- Answers written with <u>red pen</u> or with <u>pencils</u>.
- Calculators with CAS and/or wifi/BT and/or PDF capabilities
- Tools and/or sources of information <u>unless otherwise specified below</u>.

Allowed:

□ books	🗆 notes	□ dictionaries	□ syllabus	
□ formula sh	eets (see also	below under 'addi	tional information')	⊠ calculators

□ computer □...

⊠ scientific (graphical)calculator ⊠ drawing material

Additional information (if necessary to be filled in by the examiner)

- Use for each problem a separate examination paper
- The question form contains fomula sheets which can be used.
- Students can take the question form home after the exam.
- No student leaves without delivering an exam paper with a name on it!

Exam graded by: (the marking period is 15 working days at most)

Every suspicion of fraud is reported to the Board of Examiners.

Mobile Phone OFF.

Problem 1 : Elementary cases and MatrixMethod theory (45 min)

In figure 1 a small part of a cable is presented. The cable force T(x) and the constant distributed load q (force per horizontally measured length) represent the internal and external load on the cable. Elongation of the cable is neglected.

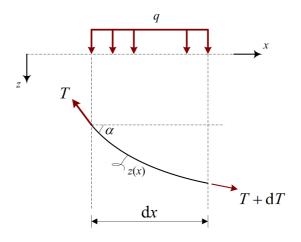


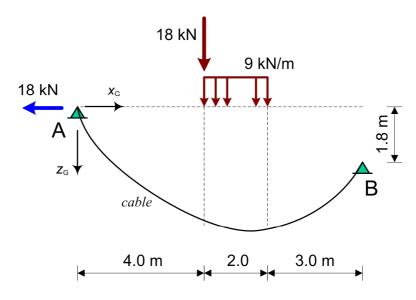
Figure 1 : Cable segment under constant distributed load

Questions will deal with the continuous modelling of cables and also the discrete solving technique with the MatrixMethod.

Questions:

a) Respond to the following proposition:

In the derivation of the ODE for this cable, the constitutive relation cannot be omitted.


- b) In case the MatrixMethod is applied to model this cable segment, sketch the "element" with its degrees of freedom and all parameters needed in the description.
- c) Derive, based on the ODE or shape functions, the element stiffness matrix.
- d) Derive, based on the ODE or shape functions, the required expressions to model the distributed load.

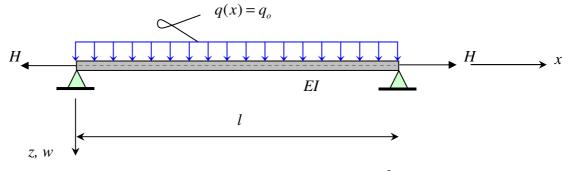
Problem 2 : Matrix Method

(45 min)

A cable with supports at A and B is shown in figure 2. The cable is loaded with a concentrated load of 18 kN and partly with a constant distributed load of 9 kN/m as indicated in the figure. The shape and the vertical position of the cable is yet unknown. The horizontal reaction force at A is specified as 18 kN. This is indicated in figure 2.

This problem is modelled with the MatrixMethod and to reduce complexity, any axial deformation of the elements is neglected.

Figure 2 : Cable structure


Questions:

- a) Describe in a few lines the essence of the Matrix Method for this problem and sketch the discretization of this cable problem using the "*cable-element*" from problem 1. Clearly show the degrees of freedom, the elements, the loads and specify the boundary conditions.
- b) Setup the complete system of equations for this model. Clearly show the *unknowns* and *knowns* in this system.
- c) Solve all the unknowns.
- d) How would you proceed (in few lines) in your MatrixMethod script if the reaction at A was not specified (assume if needed any missing data).
- e) Comment on your results under c) and d), to what extent are your results exact?

Problem 3 : Beam as a system

(40 min)

A concrete beam is enhanced with a cable as is shown in figure 3. The total axial force H used in the cable is fully taken by the supports. The cable elements (tendons) have a permanent longitudinal freedom of movement relative to the concrete beam (no bonding). To reduce complexity, any axial deformation in the tendons and the concrete is neglected. The beam is loaded after completion.

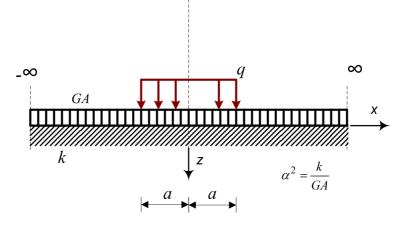
Given : l = 10 m; $q_o = 15 \text{ kN/m}$; $EI = 25000 \text{ kNm}^2$

Figure 3 : Post-tensioned beam

In a design situation you are asked to investigate the effect of H on the deflection of the beam.

Questions:

- a) Describe in a few lines the load carrying capacity of this beam and how you can model this with an ODE. You do not have to derive the ODE's for intermediate cases but you have to explain relevant data and equations.
- b) Find for the presented beam system, the general expression for the displacement field of the beam.
- c) Derive all equations needed to obtain the unknowns in your expression and present them as a system of equations expressed in the unknowns. (*hint*: use matrix presentation)


DO NOT SOLVE THE UNKNOWNS !

Without MAPLE during the exam it is a bit of a problem to find a solution in time. So you are asked to come up with a sound engineering estimate of the influence of H on the deflection of the beam. You may use the expressions on the formula sheet and assume all missing data as long as you clearly explain all steps involved.

- d) Describe in a few line your strategy to find such a relation.
- e) Find with your method a relation to predict the influence of *H* on the deflection of the beam. Show in a simple graph the effect of *H* on the deflection at midspan.
- f) If a 75% reduction of the deflection of the beam is required, estimate with your method the value of H needed to match this condition.

Problem 4 : Shear beam on an elastic foundation (50 min)

A shear beam on an elastic foundation is sketched in figure 4. The beam with shear stiffness *GA* is partly loaded with a constant distributed load q over a length 2a as is shown in the figure. The relation between the stiffness k of the foundation and the shear stiffness *GA* of the beam is expressed with the parameter α .

Given : a = 5 m; q = 10 kN/m; $\alpha = \frac{1}{5} \ln 5$;

Figure 4 : Shear beam on an elastic foundation

Questions:

- a) Describe in a few lines the load carrying capacity of this system and how you can model a shear beam on an elastic foundation with the classical displacement method. You do not have to derive the ODE's for intermediate cases but you have to explain relevant data and equations.
- b) Apply this method on the given problem and setup the necessary equations to solve this problem. Strong advice : express all equations in terms of α and k.
- c) Solve the unknowns and sketch the displacement field, expressed in terms of k. Specify the values of the displacement for x = 0 and x = a in the graph.
- d) Sketch the shear force distribution in the shear beam. Specify the maximum value of the shear force at its location in the graph.
- e) Find the maximum value of the reaction in the elastic foundation expressed in the correct units and show the location of this extreme value.

FORMULAS

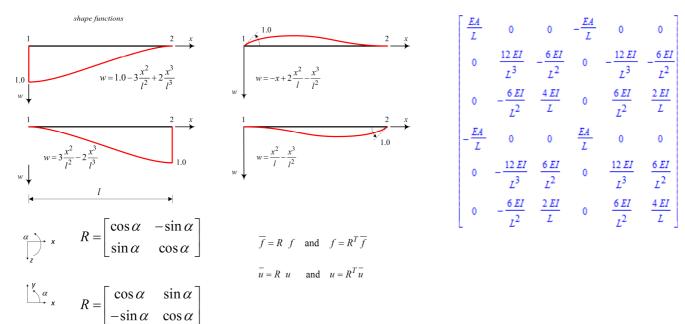
Temperature:

$$N = EA(\varepsilon - \varepsilon^{T}); \qquad M = EI(\kappa - \kappa^{T})$$
$$\varepsilon^{T} = \frac{\alpha}{A} \int_{A} T(x, z) dA; \quad \kappa^{T} = \frac{\alpha}{I} \int_{A} zT(x, z) dA$$

Arch:

$$H = -\frac{\int\limits_{arch} \frac{M^{a}z}{EI} dx}{\int\limits_{arch} \frac{z^{2}}{EI} dx + \frac{l}{EA}}$$

Stress distributions in beams:


$$\sigma(z) = \frac{N}{A} + \frac{Mz}{I}$$

$$\tau(z) = \frac{6V(\frac{1}{4}h^2 - z^2)}{bh^3} \quad \text{rectangular crosssections}$$

Cable:

.,

$$H^{2} = \frac{q^{2}l^{3}}{24\Delta};$$

$$f = \sqrt{\frac{3}{8}l\Delta} \text{ or } \Delta = \frac{8f^{2}}{3l}$$

Matrix Methods

Math tools:

$$y = Ae^{-\beta x} \sin(\beta x + \omega)$$

$$\frac{dy}{dx} = -\sqrt{2} \beta A e^{-\beta x} \sin(\beta x + \omega - \frac{1}{4}\pi)$$

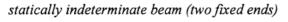
$$\frac{d^2 y}{dx^2} = 2\beta^2 A e^{-\beta x} \sin(\beta x + \omega - \frac{1}{2}\pi)$$

$$\frac{d^3 y}{dx^3} = -2\sqrt{2}\beta^3 A e^{-\beta x} \sin(\beta x + \omega - \frac{3}{4}\pi)$$

$$\int \sqrt{1+x^2} \, dx \approx \int \left[1 + \frac{1}{2} \left(\frac{dz}{dx} \right)^2 \right] dx$$
$$\int_0^a \sin^2 \frac{\pi x}{a} \, dx = \frac{a}{2} \qquad \int_0^a x \sin \frac{\pi x}{a} \, dx = \frac{a^2}{\pi}$$
$$\int_0^a x^2 \sin \frac{\pi x}{a} \, dx = \frac{a^3 \left(\pi^2 - 4 \right)}{\pi^3}$$

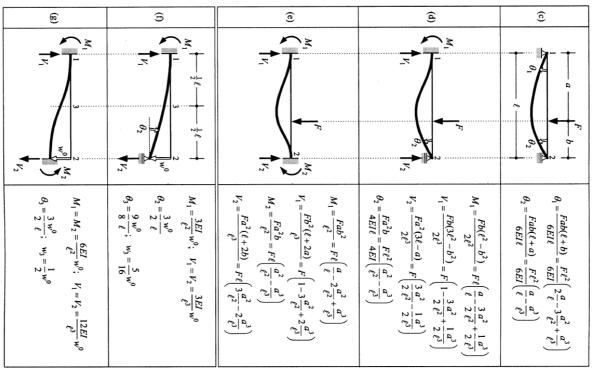
catenary solution:

$$z = -\frac{H}{q} \cosh\left(-\frac{qx}{H} + C_1\right) + C_2$$


y z z	$y \rightarrow b$ $z \rightarrow z$ $z \rightarrow z$	$\overline{y} \xrightarrow{y} \xrightarrow{y} \xrightarrow{y} \xrightarrow{y} \xrightarrow{z} \xrightarrow{z}$	$ \begin{array}{c} \overline{y} \leftarrow \mathbf{C} \\ y \leftarrow \mathbf{C} \\ + b \leftarrow \mathbf{C} \\ \overline{z} \\ z \\$	$ \begin{array}{c} \overline{y} \leftarrow b \rightarrow \\ y \leftarrow C \\ z \\ z \\ \overline{z} \\ \overline{z} \end{array} \right) $	Figure
Circle $A = \pi R^2$	Trapezium $A = \frac{1}{2}(a+b)h$ $\overline{z}_{\rm C} = \frac{1}{3}\frac{a+2b}{a+b}h$	Triangle $A = \frac{1}{2}bh$ $\overline{y}_{C} = \frac{1}{3}(2a - b)$ $\overline{z}_{C} = \frac{2}{3}h$	Parallelogram A = bh $\overline{y}_{C} = \frac{1}{2}(a+b)$ $\overline{z}_{C} = \frac{1}{2}h$	Rectangle A = bh $\overline{y}_{C} = \frac{1}{2}b$ $\overline{z}_{C} = \frac{1}{2}h$	Area, coordinates centroid C
$I_{yy} = I_{zz} = \frac{1}{4}\pi R^4$ $I_{yz} = 0$ $I_p = \frac{1}{2}\pi R^4$	$I_{zz} = \frac{1}{36} \frac{a^2 + 4ab + b^2}{a + b} h^3$	$I_{yy} = \frac{1}{36} (a^2 - ab + b^2) bh$ $I_{zz} = \frac{1}{36} bh^3$ $I_{yz} = \frac{1}{72} (2a - b) bh^2$	$I_{yy} = \frac{1}{12} (a^2 + b^2) bh$ $I_{zz} = \frac{1}{12} bh^3$ $I_{yz} = \frac{1}{12} abh^2$	$I_{yy} = \frac{1}{12}b^3h$ $I_{zz} = \frac{1}{12}bh^3$ $I_{yz} = 0$	Second moments of area centroidal othe
$I_{\overline{y}\overline{y}} = I_{\overline{z}\overline{z}} = \frac{5}{4}\pi R^4$ $I_{\overline{y}\overline{z}} = \pi R^4$	$I_{\overline{zz}} = \frac{1}{12}(a+3b)h^3$ $I_{\overline{z\overline{z}}} = \frac{1}{12}(3a+b)h^3$	$I_{\overline{z}\overline{z}} = \frac{1}{4}bh^3$ $I_{\overline{y}\overline{z}} = \frac{1}{8}(2a-b)bh^2$ $I_{\overline{z}\overline{z}} = \frac{1}{12}bh^3$	$I_{\overline{z}\overline{z}} = \frac{1}{3}bh^3$	$I_{\overline{y}\overline{y}} = \frac{1}{3}b^3h$ $I_{\overline{z}\overline{z}} = \frac{1}{3}bh^3$ $I_{\overline{y}\overline{z}} = \frac{1}{4}b^2h^2$	nents of area other

$\overline{y} R \xrightarrow{+R} R \xrightarrow{+} R$	$\overline{y} \leftarrow R \rightarrow R \rightarrow T$ $\overline{y} \leftarrow C \qquad T$ $z; \overline{z}$	y z z	y R R R R R R R R R R R R R R R R R R R	Figure
Semicircular ring $A = \pi Rt$ $\overline{y}_{C} = 0$ $\overline{z}_{C} = \frac{2}{\pi}R$ = 0.637R	Semicircle $A = \frac{1}{2}\pi R^2$ $\overline{y}_C = 0$ $\overline{z}_C = \frac{4}{3\pi}R$ = 0.424R	Thin-walled ring $A = 2\pi Rt$	Thick-walled ring $A = \pi (R_e^2 - R_i^2)$	Area, coordinates centroid C
$I_{yy} = \frac{1}{2}\pi R^3 t$ $I_{zz} = (\frac{\pi}{2} - \frac{4}{\pi})R^3 t$ $= 0.298R^3 t$ $I_{yz} = 0$	$I_{yy} = \frac{1}{8}\pi R^4 = 0.393R^4$ $I_{zz} = (\frac{\pi}{8} - \frac{8}{9\pi})R^4$ $= 0.110R^4$ $I_{yz} = 0$	$I_{yy} = I_{zz} = \pi R^3 t$ $I_{yz} = 0$ $I_p = 2\pi R^3 t$	$I_{yy} = I_{zz} = \frac{1}{4}\pi(R_{e}^{4} - R_{i}^{4})$ $I_{yz} = 0$ $I_{p} = \frac{1}{2}\pi(R_{e}^{4} - R_{i}^{4})$	Second moments of area centroidal othe
$I_{\overline{yy}} = I_{\overline{zz}} = \frac{1}{2}\pi R^3 t$ $I_{\overline{yz}} = 0$	$I_{\overline{yy}} = I_{\overline{zz}} = \frac{1}{8}\pi R^4$ $I_{\overline{yz}} = 0$	$I_{\overline{yy}} = I_{\overline{zz}} = 3\pi R^3 t$		ients of area other

(a)	(6)	(5)	(4)	(3)	(2)	(I)
	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \theta_1 $	θ_1 θ_2 θ_1 θ_2 θ_2	$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	$\frac{\sqrt{q}}{1}$	r	$\begin{array}{c} \ell \\ I \\$
$\theta_1 = \theta_2 = \frac{1}{24} \frac{T\ell}{EI}; \theta_3 = \frac{1}{12} \frac{T\ell}{EI}; w_3 = 0$	$ \theta_1 = \theta_2 = \frac{1}{24} \frac{q\ell^3}{EI}; w_3 = \frac{5}{384} \frac{q\ell^4}{EI} $	$\theta_1 = \theta_2 = \frac{1}{16} \frac{F\ell^2}{EI}; w_3 = \frac{1}{48} \frac{F\ell^3}{EI}$	$\theta_1 = \frac{1}{6} \frac{T\ell}{EI}; \theta_2 = \frac{1}{3} \frac{T\ell}{EI}; w_3 = \frac{1}{16} \frac{T\ell^2}{EI}$	$ \theta_2 = \frac{q\ell^3}{6EI}; w_2 = \frac{q\ell^4}{8EI} $	$\theta_2 = \frac{F\ell^2}{2EI}; w_2 = \frac{F\ell^3}{3EI}$	$\theta_2 = \frac{T\ell}{EI}; w_2 = \frac{T\ell^2}{2EI}$


simply supported beam (statically determinate)

forget-me-nots

statically indeterminate beam (one fixed end)

	1	o jineu enubj		minute ocum (one	Jineu enuy
(b)	(11)	(10)	(9)	(8)	(7)
		$\begin{pmatrix} M_1 \\ M_1 \\ M_3 \end{pmatrix} = \begin{pmatrix} F \\ F \\ F \\ F \\ F \\ F \\ F \end{pmatrix}$	$\begin{pmatrix} M_1 & & & \\ & & & \\ & $	$\begin{pmatrix} M_1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$M_{1} \leftarrow \frac{1}{2} \ell \leftarrow \frac{1}{2} $
			7	2	
$\theta_3 = \frac{1}{16} \frac{T\ell}{EI}; w_3 = 0$ $M_1 = M_2 = \frac{1}{4}T; V_1 = V_2 = \frac{3}{2} \frac{T}{\ell}$	$w_3 = \frac{1}{384} \frac{q\ell^4}{EI}$ $M_1 = M_2 = \frac{1}{12} q\ell^2; V_1 = V_2 = \frac{1}{2} q\ell$	$w_3 = \frac{1}{192} \frac{F\ell^3}{EI}$ $M_1 = M_2 = \frac{1}{8}F\ell; V_1 = V_2 = \frac{1}{2}F$	$\theta_2 = \frac{1}{48} \frac{q\ell^3}{EI}; w_3 = \frac{1}{192} \frac{q\ell^4}{EI}$ $M_1 = \frac{1}{8} q\ell^2; V_1 = \frac{5}{8} q\ell; V_2 = \frac{3}{8} q\ell$	$\theta_2 = \frac{1}{32} \frac{F\ell^2}{EI}; w_3 = \frac{7}{768} \frac{F\ell^3}{EI}$ $M_1 = \frac{3}{16} F\ell; V_1 = \frac{11}{16} F; V_2 = \frac{5}{16} F$	$\theta_2 = \frac{1}{4} \frac{T\ell}{EI}; w_3 = \frac{1}{32} \frac{T\ell^2}{EI}$ $M_1 = \frac{1}{2}T; V_1 = V_2 = \frac{3}{2} \frac{T}{\ell}$

settlements

support reactions and rotations at the beam ends

(6)	(5)	(4)	(3)	(2)	(1)
$\begin{array}{c} y \\ h_1 \\ \hline \\ h_2 \\ \hline \\ x_C \\ \hline \\ b \\ \hline \\ b \\ \hline \\ b \\ \hline \\ \\ x \\ \end{array}$	$\sum_{i=1}^{n} \frac{c_{i}}{b_{i}} + \frac{1}{2}b_{i} + \frac{1}{2}b_{i} + \frac{1}{2}b_{i}$	$ \begin{array}{c} $	$ \begin{array}{c} y \\ h \\ h \\ + \frac{1}{4}b \\ + \frac{3}{4}b \\ + $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	$ \begin{array}{c} $
trapezium: $y = h_1 + (h_2 - h_1)\frac{x}{b}$ $A = \frac{1}{2}b(h_1 + h_2)$ $x_C = \frac{1}{3}b\frac{h_1 + 2h_2}{h_1 + h_2}$	parabola: $A = \frac{2}{3}bh$ $x_{\rm C} = \frac{1}{2}b$	parabola: $y = h \left\{ 1 - \left(\frac{x}{b}\right)^2 \right\}$ $A = \frac{2}{3}bh$ $x_C = \frac{3}{8}b$	parabola: $y = h \left\{ 1 - \frac{x}{b} \right\}^2$ $A = \frac{1}{3}bh$ $x_C = \frac{1}{4}b$	triangle: $y = h \left\{ 1 - \frac{x}{b} \right\}$ $A = \frac{1}{2}bh$ $x_{\rm C} = \frac{1}{3}b$	rectangle: $y = h$ A = bh $x_{\rm C} = \frac{1}{2}b$

properties of plane figures to be used for the moment-area theorems