

Faculty Civil Engineering and GeoSciences

Remote Open book	CIE4190
Exam	Slender Structures
	8 pages (excl cover)
Total number of pages	JAN-21-2022 from 13:30-16:30
Date and time	J.W. Welleman
Responsible lecturer	

Only handwritten papers which have been uploaded (in pdf) in time will be assessed, Read also 'Additional Information'.

Exam questions (to be filled in by course examiner)

Total number of main topics with questions: 3 (each in separate block with time constraint)

I questions may differ in weight (the time mentioned is an indicator for the weight)

Use of tools and sources of information (to be filled in by course examiner)

Deliver your own work according to integrity statement:

- No collaboration or help "from others",
- No communication through any kind of medium,
- No distribution of files or answers to others,
- Etc.

Allowed:

X	books	X	notes	X	dictionarie	es	X	syllabus	
X	formula sh	eet	s (see also	be	ow under	`additio	nal	information')	⊠ calculators
X	computer								
X	scientific (g	graj	phical)calcu	ulat	or	🗵 drav	vin	g material	

Additional information (if necessary to be filled in by the examiner)

- Use your own examination paper with name and study number on all pages
- The question form contains fomula sheets which can be used.
- Papers will only be graded if the integrity statement has been uploaded.

- Upload in time, every part as ONE PDF file, with standard name format: surname student number exam part example BOND 007 1

Exam graded by: (the marking period is 15 working days at most)

Every suspicion of fraud is reported to the Board of Examiners.

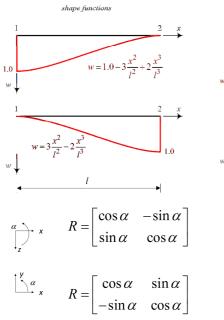
Mobile Phone OFF.

FORMULAS

Temperature:

$$N = EA(\varepsilon - \varepsilon^{T}); \qquad M = EI(\kappa - \kappa^{T})$$
$$\varepsilon^{T} = \frac{\alpha}{A} \int_{A} T(x, z) dA; \quad \kappa^{T} = \frac{\alpha}{I} \int_{A} zT(x, z) dA$$

$$\sigma(z) = \frac{N}{A} + \frac{Mz}{I} \qquad G = \frac{E}{2(1+\nu)} [\text{N/mm}^2]$$
$$\tau(z) = \frac{6V(\frac{1}{4}h^2 - z^2)}{bh^3} \qquad \text{rectangular} \\ \text{crosssections}$$


Arch:

$$H = -\frac{\int\limits_{arch} \frac{M^{a}z}{EI} dx}{\int\limits_{arch} \frac{z^{2}}{EI} dx + \frac{l}{EA}}$$

Cable:

$$H^2 = \frac{q^2 l^3}{24\Delta};$$

 $f = \sqrt{\frac{3}{8} l \Delta} \text{ or } \Delta = \frac{8f^2}{3l}$

Matrix Methods

$$\overline{f} = R \quad f \quad \text{and} \quad f = R^T \overline{f}$$

 $\overline{u} = R \ u$ and $u = R^T \overline{u}$

$\frac{EA}{L}$	0	0	$-\frac{EA}{L}$	0	0
0	$\frac{12 EI}{L^3}$	$-\frac{6 EI}{L^2}$	0	$-\frac{12 EI}{L^3}$	$-\frac{6 EI}{L^2}$
0	$-\frac{6 EI}{L^2}$	$\frac{4 EI}{L}$	0	$\frac{6 EI}{L^2}$	$\frac{2 EI}{L}$
$-\frac{EA}{L}$	0	0	$\frac{EA}{L}$	0	0
0	$-\frac{12 EI}{L^3}$	$\frac{6 EI}{L^2}$	0	$\frac{12 EI}{L^3}$	$\frac{6 EI}{L^2}$
0	$-\frac{6 EI}{L^2}$	$\frac{2 EI}{L}$	0	$\frac{6 EI}{L^2}$	$\frac{4 EI}{L}$

Math tools:
$$y = A e^{-\beta x} \sin \theta$$

$$y = Ae^{-\beta x} \sin(\beta x + \omega)$$

$$\frac{dy}{dx} = -\sqrt{2}\beta Ae^{-\beta x} \sin(\beta x + \omega - \frac{1}{4}\pi)$$

$$\frac{d^2 y}{dx^2} = 2\beta^2 Ae^{-\beta x} \sin(\beta x + \omega - \frac{1}{2}\pi)$$

$$\frac{d^3 y}{dx^3} = -2\sqrt{2}\beta^3 Ae^{-\beta x} \sin(\beta x + \omega - \frac{3}{4}\pi)$$

catenary solution:

$$z = -\frac{H}{q}\cosh\left(-\frac{qx}{H} + C_1\right) + C_2$$

$$\int \sqrt{1+x^2} dx \approx \int \left[1 + \frac{1}{2} \left(\frac{dz}{dx} \right)^2 \right] dx$$
$$\int_0^a \sin^2 \frac{\pi x}{a} dx = \frac{a}{2} \qquad \int_0^a x \sin \frac{\pi x}{a} dx = \frac{a^2}{\pi}$$
$$\int_0^a x^2 \sin \frac{\pi x}{a} dx = \frac{a^3 \left(\pi^2 - 4 \right)}{\pi^3}$$

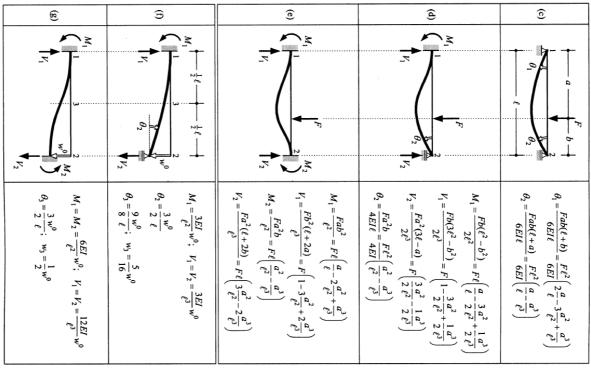
basic math:

$$e^{\ln(a)} = a; \quad e^{-\ln(a)} = \frac{1}{a}; \quad z(x) = \frac{4fx(l-x)}{l^2} (parabola)$$

y z z	$y \rightarrow c \rightarrow h$	$\overline{y} \xrightarrow{y} \xrightarrow{y} \xrightarrow{y} \xrightarrow{y} \xrightarrow{y} \xrightarrow{z} \xrightarrow{z} \xrightarrow{z}$	$ \begin{array}{c} \overline{y} \leftarrow C \\ y \leftarrow C \\ + b \leftarrow a + \\ z \\ z \\ z \\ \end{array} \right) \xrightarrow{\overline{z}} t \\ \overline{z} \\ + b \leftarrow a + \\ z \\ z \\ \end{array} $	$y \leftarrow b \rightarrow \downarrow$	Figure
Circle $A = \pi R^2$	Trapezium $A = \frac{1}{2}(a+b)h$ $\overline{z}_{C} = \frac{1}{3}\frac{a+2b}{a+b}h$	Triangle $A = \frac{1}{2}bh$ $\overline{y}_{C} = \frac{1}{3}(2a - b)$ $\overline{z}_{C} = \frac{2}{3}h$	Parallelogram A = bh $\overline{y}_{C} = \frac{1}{2}(a+b)$ $\overline{z}_{C} = \frac{1}{2}h$	Rectangle A = bh $\overline{y}_{C} = \frac{1}{2}b$ $\overline{z}_{C} = \frac{1}{2}h$	Area, coordinates centroid C
$I_{yy} = I_{zz} = \frac{1}{4}\pi R^4$ $I_{yz} = 0$ $I_p = \frac{1}{2}\pi R^4$	$I_{zz} = \frac{1}{36} \frac{a^2 + 4ab + b^2}{a+b} h^3$	$I_{yy} = \frac{1}{56}(a^2 - ab + b^2)bh$ $I_{zz} = \frac{1}{56}bh^3$ $I_{yz} = \frac{1}{72}(2a - b)bh^2$	$I_{yy} = \frac{1}{12} (a^2 + b^2) bh$ $I_{zz} = \frac{1}{12} bh^3$ $I_{yz} = \frac{1}{12} abh^2$	$I_{yy} = \frac{1}{12}b^3h$ $I_{zz} = \frac{1}{12}bh^3$ $I_{yz} = 0$	Second moments of area centroidal othe
$I_{\overline{y}\overline{y}} = I_{\overline{z}\overline{z}} = \frac{5}{4}\pi R^4$ $I_{\overline{y}\overline{z}} = \pi R^4$	$I_{\overline{z}\overline{z}} = \frac{1}{12}(a+3b)h^3$ $I_{\overline{z}\overline{z}} = \frac{1}{12}(3a+b)h^3$	$I_{\overline{z}\overline{z}} = \frac{1}{4}bh^3$ $I_{\overline{y}\overline{z}} = \frac{1}{8}(2a-b)bh^2$ $I_{\overline{z}\overline{z}} = \frac{1}{12}bh^3$	$I_{\overline{z}\overline{z}} = \frac{1}{3}bh^3$	$I_{\overline{y}\overline{y}} = \frac{1}{3}b^3h$ $I_{\overline{z}\overline{z}} = \frac{1}{3}bh^3$ $I_{\overline{y}\overline{z}} = \frac{1}{4}b^2h^2$	nents of area other

$\overline{y} \xleftarrow{\vdash R \rightarrow R}_{z;\overline{z}} \downarrow$	$\overline{y} \leftarrow R \rightarrow R \rightarrow T$ $\overline{y} \leftarrow C \qquad T$ $z; \overline{z}$	y z z z	y R R R R R R R R R R R R R R R R R R R	Figure
Semicircular ring $A = \pi Rt$ $\overline{y}_{C} = 0$ $\overline{z}_{C} = \frac{2}{\pi}R$ = 0.637R	Semicircle $A = \frac{1}{2}\pi R^2$ $\overline{y}_C = 0$ $\overline{z}_C = \frac{4}{3\pi}R$ = 0.424R	Thin-walled ring $A = 2\pi Rt$	Thick-walled ring $A = \pi (R_e^2 - R_i^2)$	Area, coordinates centroid C
$I_{yy} = \frac{1}{2}\pi R^3 t$ $I_{zz} = (\frac{\pi}{2} - \frac{4}{\pi})R^3 t$ $= 0.298R^3 t$ $I_{yz} = 0$	$I_{yy} = \frac{1}{8}\pi R^4 = 0.393R^4$ $I_{zz} = (\frac{\pi}{8} - \frac{8}{9\pi})R^4$ $= 0.110R^4$ $I_{yz} = 0$	$I_{yy} = I_{zz} = \pi R^3 t$ $I_{yz} = 0$ $I_p = 2\pi R^3 t$	$I_{yy} = I_{zz} = \frac{1}{4}\pi(R_e^4 - R_i^4)$ $I_{yz} = 0$ $I_p = \frac{1}{2}\pi(R_e^4 - R_i^4)$	Second moments of area centroidal othe
$I_{\overline{yy}} = I_{\overline{zz}} = \frac{1}{2}\pi R^3 t$ $I_{\overline{yz}} = 0$	$I_{\overline{yy}} = I_{\overline{zz}} = \frac{1}{8}\pi R^4$ $I_{\overline{yz}} = 0$	$I_{\overline{yy}} = I_{\overline{zz}} = 3\pi R^3 t$		ients of area other

(a)	(6)	(5)	(4)	(3)	(2)	Ξ
	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \theta_1 $	β_1 β_2 β_1 β_2 β_2	$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	$\frac{\sqrt{q}}{1}$	r	$\begin{bmatrix} \ell \\ EI \\ 2 \end{bmatrix}_{m_2}^T$
$\theta_1 = \theta_2 = \frac{1}{24} \frac{T\ell}{EI}; \theta_3 = \frac{1}{12} \frac{T\ell}{EI}; w_3 = 0$	$ \theta_1 = \theta_2 = \frac{1}{24} \frac{q\ell^3}{EI}; w_3 = \frac{5}{384} \frac{q\ell^4}{EI} $	$\theta_1 = \theta_2 = \frac{1}{16} \frac{F\ell^2}{EI}; w_3 = \frac{1}{48} \frac{F\ell^3}{EI}$	$\theta_1 = \frac{1}{6} \frac{I\ell}{EI}; \theta_2 = \frac{1}{3} \frac{I\ell}{EI}; w_3 = \frac{1}{16} \frac{I\ell^2}{EI}$	$\theta_2 = \frac{q\ell^3}{6EI}; w_2 = \frac{q\ell^4}{8EI}$	$\theta_2 = \frac{F\ell^2}{2EI}; w_2 = \frac{F\ell^3}{3EI}$	$\theta_2 = \frac{T\ell}{EI}; w_2 = \frac{T\ell^2}{2EI}$


simply supported beam (statically determinate)

forget-me-nots

statically indeterminate beam (two fixed ends)

statically indeterminate beam (one fixed end)

statically maci		o fixed endsj	Statically macre		Jacu chuj
(6)	(11)	(10)	(9)	(8)	(7)
		$\begin{pmatrix} M_1 \\ M_1 \\ M_3 \end{pmatrix} = \begin{pmatrix} F \\ F \\ F \\ F \\ F \\ F \\ F \end{pmatrix}$	$\begin{pmatrix} M_1 & P_q \\ P_1 & P_1 \\ P_1 & P_2 \\ P_1 & P_2 \end{pmatrix}$	$\begin{pmatrix} M_1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$M_{1} \leftarrow \frac{1}{2} \ell - \frac{1}{2} $
			2	2	
$\theta_3 = \frac{1}{16} \frac{T\ell}{EI}; w_3 = 0$ $M_1 = M_2 = \frac{1}{4}T; V_1 = V_2 = \frac{3}{2} \frac{T}{\ell}$	$w_3 = \frac{1}{384} \frac{q\ell^4}{EI}$ $M_1 = M_2 = \frac{1}{12} q\ell^2; V_1 = V_2 = \frac{1}{2} q\ell$	$w_3 = \frac{1}{192} \frac{F\ell^3}{EI}$ $M_1 = M_2 = \frac{1}{8}F\ell; V_1 = V_2 = \frac{1}{2}F$	$\theta_2 = \frac{1}{48} \frac{q\ell^3}{EI}; w_3 = \frac{1}{192} \frac{q\ell^4}{EI}$ $M_1 = \frac{1}{8} q\ell^2; V_1 = \frac{5}{8} q\ell; V_2 = \frac{3}{8} q\ell$	$\theta_2 = \frac{1}{32} \frac{F\ell^2}{EI}; w_3 = \frac{7}{768} \frac{F\ell^3}{EI}$ $M_1 = \frac{3}{16} F\ell; V_1 = \frac{11}{16} F; V_2 = \frac{5}{16} F$	$\theta_2 = \frac{1}{4} \frac{T\ell}{EI}; w_3 = \frac{1}{32} \frac{T\ell^2}{EI}$ $M_1 = \frac{1}{2}T; V_1 = V_2 = \frac{3}{2} \frac{T}{\ell}$

settlements

support reactions and rotations at the beam ends

properties of plane figures to be used for the moment-area theorems

6	(5)	(4)	(3)	(2)	(1)
$\begin{array}{c} & y \\ & h_1 \\ & + c \\ & + c \\ & h_2 \\ &$	y c h $\frac{1}{2}b$ \frac	$ \begin{array}{c} $	$ \begin{array}{c} y \\ h \\ + \frac{1}{4}b \\ + \frac{3}{4}b \\ \end{array} x $	$ \begin{array}{c} y \\ h \\ \hline $	$ \begin{array}{c} $
trapezium: $y = h_1 + (h_2 - h_1)\frac{x}{b}$ $A = \frac{1}{2}b(h_1 + h_2)$ $x_C = \frac{1}{3}b\frac{h_1 + 2h_2}{h_1 + h_2}$	parabola: $A = \frac{2}{3}bh$ $x_{\rm C} = \frac{1}{2}b$	parabola: $y = h \left\{ 1 - \left(\frac{x}{b}\right)^2 \right\}$ $A = \frac{2}{3}bh$ $x_C = \frac{3}{8}b$	parabola: $y = h \left\{ 1 - \frac{x}{b} \right\}^2$ $A = \frac{1}{3}bh$ $x_C = \frac{1}{4}b$	triangle: $y = h \left\{ 1 - \frac{x}{b} \right\}$ $A = \frac{1}{2}bh$ $x_{\rm C} = \frac{1}{3}b$	rectangle: $y = h$ A = bh $x_{\rm C} = \frac{1}{2}b$

Timoshenko – beam

$$\frac{\mathrm{d}^{2}w(x)}{\mathrm{d}x^{2}} = -\frac{q(x)}{GA_{eff}} - \frac{M(x)}{EI} \qquad EI \frac{\mathrm{d}^{2}\varphi(x)}{\mathrm{d}x^{2}} - GA_{eff}\left(\frac{\mathrm{d}w(x)}{\mathrm{d}x} + \varphi(x)\right) = 0 \quad (1)$$

$$GA_{eff}\left(\frac{\mathrm{d}^{2}w(x)}{\mathrm{d}x^{2}} + \frac{\mathrm{d}\varphi(x)}{\mathrm{d}x}\right) = -q(x) \quad (2)$$