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ENERGY PRINCIPLES 

Exercise 1 : Bar loaded in tension 

If the principle of minimum potential energy is 

applied to a limited number of kinematically 

admissible displacement fields equilibrium will not be 

met everywhere but on average it will be. This leads 

to an approximation of the displacements and force distribution in the structure. 

 

Calculate (approximate) the displacement distribution u and the normal force distribution N 

using the principle of minimum potential energy, assume the following two kinematically 

admissible displacement fields: 

 

2

2

21

2

2

)(

)(

l

x
a

l

x
axu

l

x
axu

+=

=

 

 

exercise 2 : Non-prismatic cross-section 

A non-prismatic bar as shown in the figure on the 

right is loaded in compression. The non-prismatic 

axial stiffness is given as: 
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The material is linear-elastic.  

 

Calculate the displacement a using the principle of 

minimal potential energy, assuming the following 

kinematically admissible displacement field: 
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Use the following set of steps which together form the approach of the displacement method. 

 

Kinematic equations 

Constitutive equations 

Equilibrium equations  DISPLACEMENT METHOD 
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Exercise 3 : Cantilever beam 

Use the principle of minimum 

potential energy to determine 

the displacement field w, the 

shear force V and the bending 

moment M. Assume the 

following kinematically 

admissible displacement field: 
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Compare the result with the exact solution. 

 

Exercise 4 : Cantilever beam (continued) 

Using the beam of the previous exercise but now assume the following displacement field: 
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a) Is this displacement field kinematically admissible? If not modify it. 

b) Use the principle of minimum potential energy to calculate the deflection function w. 

 

Exercise 5 : Bar loaded in tension (2) 

The displacements of the bar ends in the structure 

shown on the right are prohibited. On the prismatic 

column with axial stiffness EA a distributed load q 

acts over the entire length l. The normal force 

distribution in the column is calculated with the 

principle of minimum potential energy. For the 

displacements u(x) in the x-direction we assume 

the following: 
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The amplitude of this sinusoidal is a yet to be 

determined constant. 

 

Answer the following questions: 

 

a) Prove that the assumed displacement field satisfy to the kinematic boundary 

conditions. 

b) Calculate the amplitude expressed in q, l and EA using the principle of minimum 

potential energy. 

c) Draw the accompanying normal force diagram and calculate the characteristic values 

(with the correct signs!). 
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ANSWERS 

Exercise 1 : Bar loaded in tension 

The potential energy can be determined based on the assumed displacement field that satisfies 

the boundary conditions and is therefore a kinematically admissible displacement field. For 

the displacement field and strain field the following holds: 
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The potential energy can now be written as: 
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A stable equilibrium is only possible if a small disturbance from the state variable a doesn’t 

cause a change in potential energy. This means from a mathematical point of view a 

stationary function:  
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This has to hold for every kinematically admissible variation of the state variable. This means 

that the variation of the potential energy can only be zero if the derivative of the potential 

energy to the state variable is zero: 
 

 0
d

d
=

a

V
 

 

This is the principle of minimum potential energy. The result is:  
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The approximated displacement field is therefor: 
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The potential energy thus has the following (negative) value:  
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Exercise 2 : Non-prismatic cross-section 

The potential energy can be determined based on the assumed displacement field that satisfies 

the boundary conditions and is therefore a kinematically admissible displacement field. Based 

on this displacement field the strain field becomes: 
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The potential energy can be written as: 
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The axial stiffness is not a constant but a function of the location x and cannot be taken 

outside the integral. Solving for the total potential energy results in: 
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A stable equilibrium is only possible if a small disturbance of the state variable a doesn’t 

cause a change in potential energy. This means from a mathematical point of view a 

stationary function:  
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This has to hold for every kinematically admissible variation of the state variable. This means 

that the variation of the potential energy can only be zero if the derivative of the potential 

energy to the state variable is zero: 
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This is the principle of minimal potential energy. The final result is:  
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Exercise 3 : Cantilever beam 

The potential energy can be determined based on the assumed displacement field that satisfies 

the boundary conditions and is therefore a kinematically admissible displacement field. Based 

on this displacement field the curvature is: 
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The potential energy can be written as: 
 

 ∫∫ ×−







×=×−×=

ll

aFdx
l

a
EIaFdxEIV

0

2

22
1

0

2

2
1

2
κ  

 

Solving for the total potential energy gives the following: 
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A stable equilibrium is only possible if a small disturbance of the state variable a doesn’t 

cause a change in the potential energy. This means from a mathematical point of view a 

stationary function:  
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This has to hold for every kinematically admissible variation of the state variable. This means 

that the variation of the potential energy can only be zero if the derivative of the potential 

energy to the state variable is zero: 
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This is the principle of minimal potential energy. The result is:  

 

 

EI

Fl
a

F
l

EIa

a

V

4

0
4

d

d

3

3

=

⇔=−=

 

 

The potential energy thus has the following (negative) value:  
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Exercise 4 : Cantilever beam (continued) 

A kinematically admissible displacement field has a deflection and rotation at a clamped end 

of zero. A admissible displacement field and the accompanying curvature could be: 
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The potential energy can be written as: 
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A stable equilibrium is only possible if a small disturbance of the state variables a2 and a3 

doesn’t cause a change in the potential energy. This means from a mathematical point of view 

a stationary function:  
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This has to hold for every kinematically admissible variation of the state variables. This 

means that the variation of the potential energy can only be zero if both the derivatives of the 

potential energy to the state variables are zero: 
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This is the principle of minimal potential energy. The result is:  
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This results in a set of two equations with two unknowns. The unknowns a2 and a3 can be 

solved and the displacement field w(x) becomes: 
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The potential energy thus has the following (negative) value: 
 

 
EI

lF
V

32

6

−
=  

 



Hans Welleman - 7 - 2014 

Exercise 5 : Bar loaded in tension (2) 

The potential energy equation is: 

 

� �

� �

�

� � �

�

21
2

0 0

2
2

21
2 2

0 0

2
2

1
4

2

1
2

2

3

cos sin

2

2
0

4

l l

l l

V EA dx q u dx

x x
V EA u dx q u dx

l l l

ql
V EA u u

l

dV ql
V u EA u u

ldu

ql
u

EA

ε

π π π

π

π

π
δ δ δ

π

π

= × − ×

= − ×

= −

 
= = − = 

 

=

∫ ∫

∫ ∫

 

 

Whether the potential energy has reached a maximum or a minimum can be investigated by 

checking the second derivative: 
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With this we have shown that the extreme value is indeed a minimum.  

 

 


