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Preface

Since the first edition of this book was published in 1956, there has been a wide-
spread acceptance of the concept of limit state design. It is also generally recog-
nized that the appropriate ultimate limit state for many steel frames is plastic
collapse, so that the design of such structures is based upon an assessment of the
plastic collapse load, an appropriate load factor being provided. Whereas in 1956
the case for the use of the plastic methods had to be argued, this is no longer
necessary, and the presentation has accordingly been shortened. The Principle of
Virtual Work has been used throughout to unify the treatment.

The book is concerned with the plastic methods of analysis for beams and
plane frames, which are based upon the simplifying plastic hinge assumption. It
does not discuss the conditions under which members which have entered the
plastic range fail by instability. Nor does it deal with other problems of import-
ance in design, such as the behaviour of full-strength welded joints. Nevertheless,
the plastic methods, as presented here, can fairly be claimed to be an essential
weapon in the armoury of any competent structural designer.

Digital computers are now used extensively to solve structural problems, both
of analyis and-of design. Some programs which have been developed for frames
analyse their behaviour when the simplifying assumptions of the plastic methods
are discarded, so that the actual properties of the members are taken into
account. Others deal with the optimisation of designs subject to various forms of
constraint, These developments have not been dealt with in this edition,
although a few are referred to in passing. Only those techniques which are suit-
able for hand calculation are included; these need to be thoroughly understood
as a prelude to the use of computer programs.

Earlier editions of the book contained a comprehensive bibliography. This
would now be inappropriate in view of the exclusion of a full discussion of
computer-based developments, and so there are few references to the important
work of this nature published recently. A selection of references to the classical
work which established the basic theory has been retained.

The author is most grateful to Mr John Cima for his excellent work in
preparing the illustrations, and to Mrs Eileen Wyatt whose capacity for the
speedy production of an accurate typescript is unsurpassed.

London June 1977 B. G. NEAL






1 Basic Hypotheses

1.1 Plastic hinge and plastic collapse concepts

The plastic methods of structural analysis are now widely used in the design of
steel frames, which carry load by virtue of the resistance of their members to
bending action. Multistorey, multibay rectangular frames and single or multibay
pitched-roof portals are familiar examples of this type of structure, and the defi-
nition also includes simply supported and continuous beams. For such structures
Baker (1949) pointed out that the most economical and rational designs are
achieved by the use of the plastic methods. The plastic methods also have the
advantage of simplicity.

The objective of the plastic methods is to predict the loads at which a framed
structure will fail by the development of excessive deflections. It is appropriate
to begin by examining the behaviour of the simplest type of structure in this
category, a simply supported beam carrying a central concentrated load. Fig. 1.1
shows the results of an early test carried out by Maier-Leibnitz (1929) on an
I-beam spanning 1.6 m. The beam remained elastic up to a load W of about 130
kN, when the yield stress was attained in the most highly stressed fibres beneath
the load. At a load of about 150 kN, the central deflection § began to increase
very sharply for small increases in the load. The beam eventually failed cata-
strophically by buckling at a load of 166 kN, but before then collapse had
already effectively occurred due to the development of unacceptably ylarge
deflections.

A slight idealization of the behaviour would be to assume that the deflection
could grow indefinitely under a constant load of 150kN, as shown by the
broken line in the figure, This assumption disregards the small additional load-
carrying capacity which the beam actually possesses above this load, and is
therefore conservative. The assumed indefinite growth of deflection under con-
stant load is termed plastic collapse, and the load 150 kN at which it occurs is
the plastic collapse load, denoted by W,.

This behaviour can be described on the hypothesis that a plastic hinge de-
velops at the centre of the beam at the load W,, when the central bending
moment is 0.4 W, = 60 kNm. The characteristic of this hinge is that it can only
undergo rotation when the bending moment is 60 kNm, but while the bending
moment has this value the rotation can increase indefinitely, thus permitting an
indefinite growth of deflection. The bending moment required to develop a
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Fig. 1.1 Test on simply supported beam (after Maier-Leibnitz)

plastic hinge in this test, 60 kNm, is termed the plastic moment of the beam,
and is denoted by M. It is related to the yield stress of the material, as will be
shown in Section 1.3. The plastic methods of analysis, based on the plastic hinge
assumption, enable the plastic collapse loads of quite complex frames to be
found rapidly, as will be seen in Chapters 3 and 4. Their usefulness as a tool for
designing steel frames depends on the fact that large deflections are unlikely to
develop before the plastic collapse load is attained. However, it may be necessary
to ensure that the deflections developed before collapse are acceptable, and
methods for estimating these deflections are discussed in Chapter 5.

The plastic methods should only be used for design if the avoidance of plastic
collapse is the governing design criterion. There will be cases in which the pri-
mary problem is to avoid other types of failure, for example by fatigue or brittle
fracture. These are outside the scope of the simple plastic theory.

It is implicitly assumed throughout that no part of the structure will fail by
buckling before the plastic collapse load is reached. The problems of buckling of
columns under the conditions actually arising in rigid frames when the members
have partially yielded, and of lateral instability and other forms of buckling
under similar conditions, have been studied extensively. The pioneering work of
J. F. Baker and his associates at Cambridge was presented in The Steel Skeleton,
vol. 2(1956), and investigations carried out under the direction of Beedle at
Lehigh were described in Plastic Design in Steel (1971). The present position has
been summarized by Horne (1972) and Wood (1972). Rules are available which
enable frames to be designed so that failure by certain types of buckling will not

occur before the plastic collapse load is attained, but their discussion is outside

the scope of this book.
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1.2 Stress-strain relation for mild steel

The plastic moment of a steel beam is directly related to the yield stress, as
already stated. As a preliminary, it is necessary to review the stress-strain proper-

ties of mild steel, the material which is commonly used in the construction of

frames.

The relation between direct stress o and axial strain e for a specimen of an-
nealed mild steel in tension has the typical form shown in Fig. 1.2(a). The re-
lation is linear in the elastic range until the upper yield stress is reached at a. The
stress then drops abruptly to the lower yield stress, and the strain then increases
at constant stress up to the point b, this behaviour being termed purely plastic
flow. Beyond b further increases of stress are required to produce further strain
increases, and the material is said to be in the strain-hardening range. Eventually
a maximum stress is reached at c, beyond which the stress decreases due to the
formation of a neck in the specimen until rupture occurs at d. The maximum
stress is of the order of 400 N/mm? and the strain at fracture is of the order of
0.5.

oA fog |

c
d
a Oy @ Slope E;
b AN
Slope E
-
o) € O g

(a)

Fig. 1.2 Stress-strain relation for mild steel in tension

(a) Behaviour up to rupture
(b) Yield range

The yield range Oab is of the most interest from the point of view of plastic
theory. Since the strain at b is generally of the order of 0.01-0.02, the yield
range can be examined more conveniently if the strain scale is enlarged, as in Fig.
1.2(b). In this figure the upper and lower yield stresses are defined as oy, and g,
respectively, the slope of the initial elastic line Oa is Young’s modulus £, and the
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slope of the initial portion of the strain-hardening line beyond b is defined as E.
The strains at the yield point a and at the onset of strain hardening b are defined
as €p and €, respectively. If the stress is reduced after yield a relation such as ef
is observed, the initial slope being Young’s modulus. The deviation from lin-
earity in such an unloading relation is associated with the Bauschinger (1886)
effect.

If the stress is increased again after a reduction of this sort, yield occurs at the
lower yield stress along eb. This indicates the effect of cold-working in de-
stroying the upper yield stress, which only reappears after further heat
treatment.

The values of the constants defined in Fig. 1.2(b) depend markedly on the
composition of the steel and its heat treatment, except for the value of Young’s
modulus, which shows very little variation. Data derived by Roderick and
Heyman (1951) from the results of bending tests on four annealed steels of dif-
ferent carbon content are as shown in Table 1.1.

Table 1.1 Effect of carbon content on properties of steel

% C Oo Ou € Ey
(N/mm?) Go €0 E
0.28 340 1.33 9.2 0.037
0.49 386 1.28 3.7 0.058
0.74 448 1.19 1.9 0.070
0.89 525 1.04 1.5 0.098

It will be seen that the effect of increasing the carbon content is to increase the
lower yield stress o, while decreasing the ductility as measured by the ratio €/
€o. For structural steel e is of the order 10 €4, and £ is of the order 0.04 F, so
that the stress-strain relation is very flat after yield.

It is difficult to determine the actual tensile stress-strain relation of mild steel
in the elastic range near the yield point, because of unavoidable eccentricities of
loading which cause significant bending stresses. However, Morrison (1939)
showed that the initial departure from linearity usually observed below the yield
point could be ascribed to yielding in the most highly stressed fibres caused by
the eccentricity of loading. He therefore concluded that the yield point, pro-
portional limit and elastic limit were all coincident. The tests also showed that
the values of the upper yield stress showed no more variation from specimen to
specimen of the same material than those of the lower yield stress. The unpre-
dictable variations in the values of the upper yield stress reported by other
observers were therefore concluded to be due to variations in the eccentricity of
loading. It was also shown that for a given steel the stress-strain relation in com-
pression is practically identical with that for tension up to the point b where
strain-hardening begins,
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The yield phenomenon for mild steel is accompanied by the formation of
Liiders’ lines making an angle of about 45° with the axis of the tensile specimen,
showing that plastic flow occurs on those planes where the shear stress is greatest.
The material within the Liiders’ lines has undergone a considerable amount of
slip, corresponding to a jump in the strain from a to b in Fig. 1.2(b). The longi-
tudinal strain in a yielded fibre therefore varies discontinuously along the fibre,
and a stress-strain relation such as that shown in Fig. 1.2(b) only represents aver-
age strains over a finite length.

The stress-strain relation is often idealized by the neglect of strain-hardening
and the Bauschinger effect on unloading, leading to the relation shown in Fig.
1.3(a). Although the upper yield effect is a very real one, it disappears on cold-
working and is usually not exhibited by the material of rolled steel sections.
Moreover, it will be seen in Section 1.3 that it has no effect on the value of the
plastic moment. If it is disregarded, the stress-strain relation becomes that of Fig.
1.3(b), which is often termed the ideal plastic relation.

oA oA

OL -
Qo Hf— -
1
i
: Slope E
‘{/ \
| .
ole, €
- -0y
-|-ou
(a) (b)

Fig. 1.3 Stress-strain relations neglecting strain-hardening

(a) With upper yield stress
(b) Without upper yield stress (ideal plastic)

The neglect of strain-hardening in these idealized relations may seem difficult
to justify in view of the fact that the strains will certainly enter the strain-
hardening range in many members in actual structures. However, by neglecting
the increase of stress during strain-hardening, errors will be introduced which are
on the safe side, and it will be seen in Chapter 5 that these errors are usually very
small.
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1.3 Elastic-plastic bending

For a homogeneous beam of given cross section, the relationship between bend-
ing moment and curvature beyond the elastic limit can be derived from the
stress-strain relation provided that the usual assumptions of the Bernoulli-Euler
theory of bending are made. These are:

(a) The beam is bent by pure terminal couples, so that shear and axial forces
are not present.

(b) The deformations are small, so that stresses other than longitudinal nor-
mal stresses are negligible.

(¢) The relation between longitudinal stress and strain is the same in flexure
as in simple tension or compression.

(d) Originally plane cross sections remain plane.

In addition it will be assumed that the stress-strain relation is of the ideal
plastic type shown in Fig. 1.3(b), with no upper yield stress. It is further as-
sumed that this relation is obeyed by each individual longitudinal fibre of the
beam. In view of the discontinuous nature of the yielding process, this assump-
tion requires experimental verification; several investigators, notably Roderick
and Phillipps (1949) have provided evidence in its favour. Finally, it is assumed
that there are no residual stresses in the beam. The analysis is simplified con-
siderably if the cross section is symmetrical with respect to an axis which lies in
the plane of bending, as happens in many practical cases.

Suppose that the beam is initially straight, and is then bent into an arc of a
circle of radius R by pure terminal couples M, say. It is shown in elementary
texts on the Strength of Materials that the longitudinal strain e at a distance y
from a neutral axis is given by '

€ = Ky (1.1)

where k = 1/R is the curvature of the beam. This relation is derived from purely
geometrical considerations, and is independent of the properties of the material.
If the beam is initially curved, Equation (1.1) is still true provided that k denotes
the change of curvature produced by M.

1.3.1 Rectangular cross section

Consider the rectangular cross section of breadth B and depth D which is shown
in Fig. 1.4(a), with the bending moment M acting about an axis Ox parallel to
the sides of breadth B. In this case the neutral axis will bisect the cross section,
because of its double symmetry.

The linear variation of strain across the section implied by Equation (1.1) is
shown in Fig. 1.4(b). Here it is supposed that the strain in the outermost fibres
exceeds the strain e, which corresponds to the yield stress g, (Fig. 1.3(b)). The
yield strain €, is attained at distances + z from the neutral axis. The correspond-
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ing distribution of normal stress is shown in Fig. 1.4(c). There is an elastic core
of depth 2z outside which there are two yielded zones in which the normal stress
is of magnitude o, .

vA yA YAO_
—— %]

—] o,B(2-2)
N o [ i
2 B 0, Bz
z 2 2
5‘2

5 T o e 5 >0
% | ;—(gi-z)
_t % T

/ -

Plane of bending

(a) (b) (c)

Fig. 1.4 Elastic-plastic flexure of beam of rectangular cross section

(a) Cross section
(b) Distribution of strain
(c) Distribution of stress

The bending moment M corresponding to this distribution of stress is readily
evaluated. Fig. 1.4(c) shows the resultant normal forces in the two haives of the
elastic core and in the yielded zones, and also defines their lines of action. It fol-
lows that

1 4 D D D 1
M= (Z—UOBZ) 37 + GOB(E —z) (5 +z) = B[—4— - 3—22J o.

The corresponding curvature is obtained from Equation (1.1) by noting that
€ = €, when y = z, so that

(1.2)

K = €z (1.3)

When z = D/2, the yielded zones vanish and the stress only just attains the
yield value o, in the outermost fibres. The corresponding bending moment My, is
the greatest moment that the section can withstand before yielding. It is termed
the yield moment; its value is found from Equation (1.2), with z = D/2, to be
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M, = LBD%g,. (1.4)

My could also be found directly from the elastic theory of bending, for by
definition

M, = Zo,, (1.5)

where Z is the elastic section modulus, which for a rectangular cross section has
the value BD? /6.

The curvature corresponding to this situation is denoted by ky, and from
Equation (1.3)

Ky = 260/D. (16)

Combining Equations (1.2)—(1.6), the bending moment-curvature relation
can be put in non-dimensional form as follows:

M . Ky 2
i, =15 O.S(K) ) (1.7)
a result first obtained by de Saint-Venant (1871).

Fig. 1.5 shows this bending moment-curvature relation, together with the
elastic relation appropriate when M is less than My, . Its important feature is that
M tends to a limiting value 1.5 My as k becomes very large. In the limit, when
M= 1.5 My, k becomes infinite, and Equation (1.3) shows that z is then zero, so
that the elastic core vanishes. The entire cross section is then plastic, and the
corresponding bending moment is the plastic moment M. Using Equation (1 .4),

M, = 1.5My, = BD?q,. (1.8)
M
M, A
1.5
10—
1
[}
051 |
|
{ 1 1 1 .
0 1 2 3 4 K
Ky

Fig. 1.5 Bending moment-curvature relation for beam of rectangular cross
section

The attainment of the plastic moment thus corresponds to the development
of infinite curvature, which implies that a finite change of slope can occur over
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an infinitely short length of the beam. This is the explanation of the plastic
hinge behaviour observed in steel beams. The stress distributions corresponding
to My and M,, are shown in Fig. 1.6.

y A y A v A

B % o
b
2
- - -
(o] X o a o (o8
b
2
Plane / T (2
of bending

(a) (b) (c)

Fig. 1.6 Stress distributions in beam of rectangular cross section

(a) Cross section
(b) At yield moment
(c) At plastic moment

In practice, the condition of full plasticity shown in Fig. 1.6(c) cannot be
attained. Equation (1.1) shows that infinite curvature requires infinite strain,
which is unattainable. Above a certain curvature, the strains in the outer fibres
would become sufficiently large to cause strain-hardening. Suppose, for example,
that strain-hardening commences when € = 10 e,. From Fig. 1.4(b), this strain is
reached in the outermost fibres when z = 0.1 D/2, and it follows from Equations
(1.3) and (1.6) that k = 10 k. From Equation (1.7),

M = 1495 M, = 0997 M,

Thus the bending moment approaches M, to within 0.3 per cent before
strain-hardening begins. The plastic moment can therefore be regarded as an
approximate indication of the bending moment at which something very much
like a hinge action will occur in practice, with large curvatures developing at the
cross section where this moment is attained.

This simple theory assumes that the elastic-plastic boundaries are straight
lines parallel to the sides of length B; this is not strictly true, as pointed out by
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Hill (1950). Moreover, at large curvatures additional radial stresses would be
called into play, for a curved fibre subjected only to tensile or compressive
forces at its ends would not be in radial equilibrium. Nevertheless, the plastic
moment which corresponds to the fully plastic stress distribution is found in
practice to be close enough for all practical purposes to the bending moment
which causes plastic hinge action.

1.3.2 Section with a single axis of symmetry

Consider now a beam whose cross section only has one axis of symmetry, as
shown in Fig. 1.7(a). O is the centroid of the cross section and Oy is the axis of
symmetry, and it is assumed that the beam is bent in the plane containing the
axis of the beam and Oy by terminal couples M. The axis Ox in the plane of the
cross section is the neutral axis for elastic behaviour of the beam.

vA vA
R R W SR
ymax j j
ol o
/ x O o " -
- A
Plane
of bending .
(a) (b) (c) (d) (e)

Fig. 1.7 Stress distributions in beam with single axis of symmetry

(a) Cross section

(b) At yield moment

(c) At attainment of yield stress on lower face

(d) Plastic zones spreading inwards from both faces
(e) At plastic moment

In this case yield first occurs at the upper surface of the beam, as shown in
Fig. 1.7(b), where y has its greatest value y™**. The yield moment is given by-

1
MY = (ymax)ao = ZO().

As M increases above My, a yield zone develops in the upper portion of the
beam. Fig. 1.7(c) shows the corresponding stress distribution for the particular
case in which the yield stress o, is just attained on the lower surface of the
beam. The neutral axis no longer passes through the centroid O, but assumes a
position dictated by the fact that the resultant normal force on the cross section
must be zero.
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A further increase of bending moment causes yield to spread inwards from
the lower surface of the beam, as well as spreading farther in from the upper sur-
face, as shown in Fig. 1.7(d). Ultimately the two zones of yield meet, the distri-
bution of stress then being as shown in Fig. 1.7(e). This is the condition of full
plasticity, and the corresponding bending'moment is the plastic moment.

1.3.3 Effect of upper yield stress

The theory was modified to include the effect of an upper yield stress by
Robertson and Cook (1913), who assumed the stress-strain relation of Fig.
1.3(a). One consequence of this assumption is that the yield moment becomes
Zoy, rather than Zo,, and the (M, k) relation is also changed. However, as the
curvature tends to infinity, the stress distributions still tend towards those
shown in Fig. 1.6(c) and 1.7(e). The plastic moment, which is calculated from
such fully plastic stress distributions, is therefore independent of the value of the
upper yield stress.

The simple theory of elastic-plastic bending which has been outlined in this
section cannot be regarded as a completely accurate description of the behaviour
of steel members. The discontinuous nature of the yielding process, as indicated
by the development of Liiders’ lines, invalidates some of the assumptions made.
For a detailed study of the problem, reference should be made to the work of
Leblois and Massonet (1972).

1.4 Evaluation of plastic moment

The value of the plastic moment can be calculated directly. Fig. 1.8 shows a
cross section with a single axis of symmetry Oy which lies in the plane of bend-
ing. Since the resultant axial force is zero the neutral axis in the fully plastic con-
dition must divide the cross section into two equal areas, so that the resultant
axial tensile and compressive forces ate both equal to 3404, where 4 is the total
area of the cross section. If the two equal areas into which the cross section is
divided have centroids G; and G, at distances 7, and y, from the neutral axis
respectively, as in Fig. 1.8, the resultant forces will act through G; and G, and
the plastic moment will be given by

My, = FA( +52)00. (1.9)

Thus, if the plastic section modulus Z;, is defined by the relation My, = Z, 0, it
follows that

Zy = 34 +72). (1.10)

For a rectangular section of breadth B and depth D, bent about an axis
parallel to the sides of breadth B, the area A = BD and y; = 7, = D/4, so that
the plastic moment is



12 THE PLASTIC METHODS OF STRUCTURAL ANALYSIS

Equal area |
axis

/ G,
Plane

of bending

Fig. 1.8 Fully plastic stress distribution for cross section with single axis of
symmetry
My, = iBD? g, (1.1D)

as found previously. This result was first obtained by de Saint-Venant (1864). As
already pointed out (Equation (1.4)), the yield moment is

M, = 3BD*q,.

For this cross section the ratio My, /My, is thus 1.5. In general, the ratio My /My is
termed the shape factor, and is denoted by v, so that

Mo _ Zo
V=7 (1.12)

This ratio depends solely on the shape of the cross section.

A commercial I-section can be idealized by regarding the flanges as rectangles
of breadth B and thickness T and the web as a rectangle of depth (D — 27) and
thickness £, as shown in Fig. 1.9. For this idealized section it can be shown that
for bending about the major axis XX, the elastic and plastic section moduli, Z
and Z, are given by

zZ= ll—)[%BT3 +BT(D—T)* + 1D — 27)°]. (1.13)

Zy = BT(D—T)+ 4¢(D —2T)*. (1.14)

Taking as an illustration a 356 x 127 universal beam at 39 kg/m, with D =
356 mm and B = 127 mm, it is found from section tables that the average flange
and web thicknesses are 7= 10.7mm and ¢=6.5mm, respectively. From
Equations (1.13) and (1.14) it is then found that Z = 569.3 cm® and Z, = 651.2
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cm?. The values given in section tables are 570.0 cm® and 651.8 cm®, differing
only slightly from those calculated because of the small departures of the actual
section from the ideal assumed. The shape factor derived from either pair of
values is 1.14, a value typical for a rolled I-section. Formulae for the values of
Z, and v for some of the commoner structural sections are given in Table 1.2.

Fig. 1.9 Idealized I-section

If the axis of the applied bending moment is not parallel to, or perpendicular
to, an axis of symmetry of the cross section, the plane of bending will not gener-
ally be perpendicular to the neutral (equal area) axis. A general treatment of this
problem has been given by Brown (1967), and the case of a rectangular cross
section was dealt with by Harrison (1963).

The plastic moment represents a definite limit on the value of the bending
moment, regardless of the possible presence of residual stresses induced, for
example, by previous bending into the partially plastic range. This follows from
the fact that the longitudinal stress cannot exceed 0o ; on this basis the fully
plastic stress distribution clearly corresponds to the greatest possible bending
moment which can be developed. Moreover, it is only when this distribution is
attained that the curvature can become infinite, so that a plastic hinge can form,
for with any other stress distribution there must be an elastic core with a corre-
spondingly finite rate of change of strain with distance from the neutral axis. It
follows that irrespective of any residual stress distribution across a section before
loading, a plastic hinge can only form when the plastic moment is attained, as
pointed out by Baker and Horne (1951).

The foregoing analysis assumed that the only stresses acting were the longi-
tudinal normal stresses due to bending. However, there will usually be shear and
axial forces acting at a cross section in addition to the bending moment. These
will modify the value of the plastic moment to an extent which is often negli-
gible, but these effects may be calculated and allowed for where necessary. A
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Table 1.2 Plastic section moduli and shape factors for structural sections

Section Zy v
B
Solid *—*‘ 3BD? 1.5
rectangular RE
D
N A
Rectangular B BT(D—T)+45T(D—2TB=D
hollow section —_ T=005D
D N D v =1.18
|
Ir
16
Solid ip3 —=1.70
circular 3m

Circular T=0.05D

D 27N
1p3l1 — (1 -2
hollow sD [1 (1 D ) ] v =134
section @ T<D;TD? T<D

4
V= ;r‘ =1.27
A
Approxi- Y Axis XX About 1.14 for
mation to }._*B_( BT(D—T)+ it(D —2TY |universal beams
I-section
b t AxisYY About 1.60 for
X-——— X |LTB? + (D — 2T)1? universal beams
-
Y

full discussion of these and other related effects will be given in Chapter 6.

Since the value of the plastic moment is proportional to the lower yield stress
0y, those factors which affect oo will also affect the value of the plastic moment.
Thus, its value will depend on such influences as the composition and heat treat-
ment of the material, the rate of loading, and strain-ageing. These factors will
also be discussed in Chapter 6.

SR
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1.5 Plastic hinge assumption for other structural materials

The plastic methods can be applied to frames of any material, provided that the
members behave reasonably closely in accordance with the plastic hinge assump-
tion. This means that whenever the bending moment reaches a critical value a
plastic hinge forms and can undergo extensive rotation while the bending
moment remains sensibly constant.

Reinforced concrete members often exhibit a limiting moment at which quite
large hinge rotations develop, but eventually the moment falls off with further
increase of rotation. The applicability of the plastic methods to reinforced con-
crete frames therefore depends crucially on the rotation capacity or ductility of
the hinges.

A. L. L. Baker (1970) has described an ultimate load method for designing
reinforced concrete frames, which differs from the simple plastic methods in
that it requires only limited rotations at the plastic hinges. The rotation capacity
of hinges in reinforced concrete beams has been studied extensively; a paper by
Cranston and Reynolds (1970) shows that in certain circumstances a good
measure of ductility is available, It has also been shown, by Cranston and
Cracknell (1969), that for rectangular portal frames the simple plastic theory can
provide close estimates of actual collapse loads.
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Examples
1. Show that the plastic section modulus for a solid circular section, diameter D,
isD3/6.

2. A rectangular hollow section has external dimensions B =200 mm, D = 400
mm and a wall thickness T= 12.5mm. Find its plastic section modulus for
bending about the major axis parallel to the sides of breadth B.

3. A T-section may be regarded as composed of two rectangles, the flange being
180mm x 15mm and the web 165 mm x 15 mm. For bending about an axis per-

pendicular to the web the elastic section modulus is 124.6 cm®. Find the corre- |

sponding value of the shape factor.

4. A beam of solid square cross section, side B, is composed of a material whose
yield stresses in tension and compression are oy and 1.5 og, respectively. It is
bent about an axis parallel to one of the sides. Find the position of the neutral
axis in the fully plastic stress distribution, and the plastic moment.

5. Show that a beam of the cross section of example 3 and the material of ex-
ample 4 has two different plastic moments, depending on whether the tip of the
web is in tension or compression, and find their ratio.

SR
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6. A beam of solid rectangular cross section, breadth B and depth D, is bent
about an axis parallel to the sides of breadth B. If the bending moment M is
steadily increased to 0.88 My, find the depth of the elastic core, assuming no
upper yield stress. If M is then reduced to zero, find the greatest residual stress,
assuming elastic behaViour on unloading. Verify that M could then vary between
0.88 My and —0.453 My, without further yield taking place.

7. A uniform beam ABCD has a plastic moment M, and is simply supported at
its ends A and D:

AB =BC =1, CD=2L

It carries a concentrated load kW at B and a second concentrated load W at C.
Find the value of W which would cause plastic collapse for the three cases k =1,
2, 3.

8. A rectangular hollow section has all four sides of length B and thickness T.
Find the plastic moment for bending about an axis XX passing through its
centroid and parallel to two of the sides, assuming that T is very small as com-
pared with B.

Bending moments M, and My are applied about XX and an axis YY perpen-
dicular to XX, respectively, My being greater than My. Find the relationship be-
tween My and My in the fully plastic condition.



2 Simple Cases of Plastic Collapse

2.1 Introduction

The plastic hinge hypothesis, which forms the basis of the calculation of plastic
collapse loads, is summarized in Fig. 2.1, which shows the relationship between
bending moment M and curvature k for a beam of elastic flexural rigidity £/ and
plastic moment M,,. If the shape factor v were unity, so that My = My, the beam
would behave elastically until the plastic moment was attained, and then the
curvature could grow indefinitely, permitting the formation of a plastic hinge. A
reduction of bending moment below the plastic moment M, would cause elastic
unloading. This behaviour, shown by the full line, is the basis of the calculations
given in this chapter. If M, is less than My, the appropriate modification is
shown schematically by the broken line in Fig. 2.1; a detailed discussion of this
type of (M, «) relation is deferred until Chapter 5.

M, o
/// .
My——— Slope EI
-
o K

Fig. 2.1 Ideal bending moment-curvature relation

When a statically indeterminate frame is subjected to steadily increasing
loads, the formation of the first plastic hinge does not in general cause plastic
collapse. Further increases of the loads can usually be carried, and other plastic
hinges form successively until finally there are enough hinges to permit a mech-
anism motion. Plastic collapse then occurs.

This process will be examined for a number of simple structures by means of ~

step-by-step calculations. As will be seen in Chapter 3, it is possible to determine
the plastic collapse load and the corresponding collapse mechanism for a given

.
.
7
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structure and loading by direct methods, in which no consideration is given to
the sequence in which the plastic hinges form as the loads are brought up to the
values which cause collapse. Indeed, the simplicity of the plastic methods is due
to the fact that direct calculations of this kind can be made. Nevertheless, a
thorough understanding of the process by which those plastic hinges which
participate in the collapse mechanism are successively formed under steadily in-
creasing loads is an essential preliminary to the study of the plastic methods
themselves. The step-by-step technique is also used to demonstrate two import-
ant facts concerning plastic collapse loads, namely, that within wide limits the
value of the plastic collapse load is unaffected by the presence of residual stresses
or by the order in which the various load components are brought up to the
values which cause collapse. :

2.2 Simply supported beam

The first structure to be considered is a simply supported beam of uniform cross
section, which has a span / and is subjected to a central concentrated load W, as
shown in Fig. 2.2(a). The bending moment diagram for this beam is shown in
Fig. 2.2(b), the maximum sagging bending moment at the centre of the beam
being WIf4. Since the beam is statically determinate, the form of this diagram is
independent of the properties of the beam, and in particular of the assumed
(M, k) relation.

If W is increased steadily from zero, the beam at first behaves elastically.
Eventually the central bending moment reaches the value My, and a plastic hinge
forms beneath the load. The beam then continues to deflect at constant load as
the plastic hinge rotates, and so fails by plastic collapse. The plastic collapse load
W, is determined by equating the magnitude of the central bending moment to
the plastic moment, giving

Wl = M,
aM,
We = —12 (2.1)

Since the bending moment at every cross section except the central section is
less than My, the beam remains elastic everywhere except at the centre. The con-
stancy of the load, and therefore of the bending moments during plastic collapse,
implies constancy of the curvatures. The increases of deflection .during collapse
are therefore due solely to the rotation at the central plastic hinge. This effect is
illustrated in Fig. 2.2(c) and (d). Curve (i) in Fig. 2.2(c) is the deflected form of
the beam just as the collapse load W, is attained, but before any rotation has
occurred at the central plastic hinge. Curve (ii) is the deflected form of the beam
after the central hinge has undergone rotation through an arbitrary angle 20. The
curved shape of each half of the beam is the same in case (i) as in case (i).
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(a) oy A
4 4 {
2 2
(b)

(c)

(@) A ~ {

20

Fig. 2.2 Simply supported beam with central concentrated load

(a) Loading

(b) Bending moment diagram

() (i) Elastic deflected form, W = W,
(ii) Deflected form during collapse

(d) Changes of deflection during collapse
Plastic hinges shown thus e

Fig. 2.2(d) shows the changes of deflection which have occurred during plastic
collapse, obtained as the difference between the deflections in case (if) and case
(i); each half of the beam is straight in this figure. These changes of deflection
are thus due solely to the rotation at the plastic hinge. Fig. 2.2(d) represents the
collapse mechanism for this simple case. ‘

The elastic central deflection & of the beam is WI*/48E1. As the collapse load

is attained the central deflection §, at the point of collapse is therefore given by

WLl Ml°

© T 48ET 12EI°

making use of Equation (2.1). The behaviour of the beam can now be summar-
ized on a diagram relating the load W to the central deflection . This load-
deflection relation is shown as Ocb in Fig. 2.3. Oc is the behaviour in the elastic

s

i
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range, and cb represents plastic collapse under constant load, the increase of
deflection from ¢ to b being /6/2, as'in the mechanism of Fig, 2.2(d).

The hinge rotation and therefore the additional deflection developed during
plastic collapse is indefinite. However, if very large deflections occurred, the
change in geometry of the structure would affect the conditions of equilibrium,
for example by enabling the load to be supported partly by direct tension in the
two halves of the beam. The simple plastic theory does not concern itself with
such effects; it predicts the loads at which large deflections are imminent, as at
the point ¢ in Fig. 2.3.

amy o b,
i i
amy| a
vi

4

29

2o

o b )

Fig. 2.3 Load-deflection relation for simply supported beam

The broken curve commencing at a in Fig. 2.3 shows qualitatively the effect
of taking into account the difference between the yield moment My and the
plastic moment My,. Elastic behaviour would cease at the yield load W, when the
central bending moment was My, where

= My _ Ay _ Ve
I vi v’
v being the shape factor. Plastic collapse would still occur at the same value of W
as before, but greater deflections would be developed before collapse. A more
detailed study of this point is made in Chapter 5.

For this simple example the ratio of the collapse load W, to the yield load W,
is equal to », the shape factor. The ratio of W, to Wy is always v for any stati-
cally determinate structure, in which the greatest bending moment is pro-
portional to the load and occurs at the same position regardless of the value of
the load. Yield occurs when this greatest bending moment is equal to My, and
collapse occurs when it is equal to My, for the introduction of a single hinge is
always sufficient to reduce a statically determinate structure to a mechanism. It
follows that the ratio of W, to Wy is the same as the ratio of My, to My, which
by definition is the shape factor ».
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Equation (2.1) shows how the plastic collapse load was calculated by equating
the maximum bending moment to the plastic moment. This is a statical pro-
cedure but the collapse load can also be found by a kinematical procedure, as
first pointed out by Horne (1949). During collapse there is no change in the
elastic strain energy stored in the beam, since the bending moment distribution
remains unaltered. The work done by the loads during a small motion of the
collapse mechanism is therefore equal to the work absorbed in the plastic hinge,
since the motion is quasi-statical. In the mechanism motion of Fig. 2.2(d) the
load W, moves through a distance 18/2 and so does work W./0/2. The rotation
at the plastic hinge is 20, so that the work absorbed in the hinge is 2M56. It
follows that

AW I0 = 2Myp0
4M,
wc = _72:
which agrees with Equation (2.1).
w
 REERERERERRREEE
S e w—
[ 1 | N i
2 2
o
M,
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Fig. 2.4 Fixed-ended beam with uniformly distributed load

(a) Loading
(b) General form of bending moment diagram
(c) General deflected form

.
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2.3 Fixed-ended beam

The behaviour of a fixed-ended beam of uniform cross section and length /,
carrying a uniformly distributed load W, will now be considered. The end sup-
ports are assumed to prevent rotation but permit small axial movements; if axial
movement is also prevented large increases in the carrying capacity can occur, as
shown by Haythornthwaite (1957).

In what follows a consistent sign convention w111 be used for bending mo-
ments, curvatures and hinge rotations. Positive bending moments are those
which cause tensile stresses in the fibres adjacent to the broken line in Fig.
2.4(a), and positive curvatures and hinge rotations correspond to tensile strains
in the same fibres.

The bending moment diagram has the parabolic form shown schematlcally in
Fig. 2.4(b); a statical analysis gives the equilibrium equation

M, —M; = _P;il 2.2)
The beam has one statical indeterminacy or redundancy; the separate values of
M, and M, cannot be found from equilibrium alone.

The state of deformation depicted in Fig. 2.4(c) forms the basis of the sub-
sequent calculations. Here the beam has developed a slope — ¢, at each end, and
the entire span is presumed to be behaving elastically. An elastic analysis (by, for
example, elementary beam theory) gives the following compatibility equation:

2ET
M, = —5Wi— —Z@—, (2.3)
and it can also be shown that
— WZ3 1
= 3samr v 2.4)

If W is increased steadily from zero the behaviour is at first wholly elastic, so
that ¢; = 0. Equations (2.2), (2.3) and (2.4) then solve to give the elastic
solution

My = — Wl
M, = LWl
3
5 = Wi '
384ET
Elastic behaviour ceases when M; = — My, so that plastic hinges form at each

end of the beam. The yield load Wy is therefore given by

—5Wyl = —M,
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At this value of the load, the state of the beam is as given in the first line of
Table 2.1. Fig. 2.5(a) shows the deflected form of the beam at the load Wy, and

Table 2.1 Fixed-ended beam: proportional loading

AWl w My My ¢ BI S8ET

My My My My Myl Myl
12 —1 0.5 0 5

4 0 0.5 -4 =
16 —1 1 —% B

Fig. 2.5(b) shows the corresponding bending moment diagram. If W increases
from Wy to Wy + AW, the plastic hinges at each end of the beam will undergo
rotation while M; remains constant at the value —Mjy. All changes occurring in
this ‘step’ will be denoted by the prefix A. Fig. 2.5(c) shows the corresponding
deflected form of the beam during this step, which is characterized by

M, = —M,, AM, =0, A¢; <O.
Equations (2.2), (2.3) and (2.4) become
aw

AM, = : (2.6)
8 .
ETA
0= —T%sz—z—l‘l’—‘. ()
AW
AS = —1IAg,. (2.8)
38apr A%

Since AM, is zero, there is only one unknown bending moment increment
AM, , whose value is obtained immediately from the equilibrium equation (2.6).
The beam is therefore statically determinate in this step. However, there is now a
new geometrical unknown A¢; . This is found from the compatibility equation
(2.7) to be

AW
2481

Agy =

Substituting in Equation (2.8)

_ SAWP
T 384ET°

Ad (2.10)

2.9)
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Fig. 2.5 Behaviour of fixed-ended beam above yield load

(a) Deflected form, W = Wy,

(b) Bending moment distribution, W = Wy,
(c) Deflected form, W = Wy + AW

(d) Bending moment distribution, W = W,
(e) Collapse mechanism

Equations (2.6), (2.9) and (2.10) show that the incremental relations between
AW, AM,, Ag; and AS are those for a simply supported beam. This is because
the conditions AM; =0, A¢; #0 correspond to simply supported end con-
ditions.

At the beginning of this step the value of M, is 0.5 M, as shown in Table
2.1. As AW increases, M, increases in accordance with Equation (2.6) until it
reaches the value M. The bending moment distribution is then as shown in Fig.
2.5(d). The corresponding value of AW is given by
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Wi
0.5Mp+AT = M,
aw = e

From Equations (2.9) and (2.10) the corresponding values of A¢; and AS are

!
Abt = —epr
2

as = Mpl”
96E]

These incremental values are entered in the second line of Table 2.1, and the
third line shows the resulting situation at the end of the step, with
W=12M,/l +4M,/l =16 Mp/I.

When W has this value, a plastic hinge forms at the mid-point, and the beam
then collapses, the collapse mechanism being as shown in Fig. 2.5(e). The col-
lapse load W, is therefore 16 My/l, a result first obtained by Kazinczy (1914). A

When W = W,, but before the central plastic hinge has begun to rotate, the
beam is said to be at the point of collapse. The conditions at the point of col-
lapse are those given in the last line of Table 2.1. The hinge rotations —0 at each-
end of the beam which are shown in the collapse mechanism of Fig. 2.5(e) are
additional to the rotations —M,//6ET which have already developed at the point
of collapse. .

The load-deflection relation is shown in Fig. 2.6, in which Oy represents the
elastic behaviour up to Wy, yc represents the elastic-plastic step and cb represents
plastic collapse by the mechanism of Fig. 2.5(e). The broken curve commencing
at a shows schematically the type of relation which would be obtained if the
yield moment My was less than M.

This load-deflection relation is typical for a beam or frame with one redun-
dancy. When the first plastic hinge forms at the yield load (in this case a sym-
metrical pair of hinges), the structure is rendered statically determinate for
further increases of the load, and the plastic hinge rotations which then occur
cause a reduction in the slope of the load-deflection relation. Collapse does not
occur until a further plastic hinge forms, thus reducing the structure to a mech-
anism. In general a finite increase in the load above the yield value will be
required to bring the bending moment at the final plastic hinge position up to
the plastic moment.

The behaviour of the fixed-ended beam is thus fundamentally different from
the behaviour of the simply supported beam, for which the load-deflection

relation was shown in Fig. 2.3. In that case the formation of a single plastic -

hinge caused collapse, and the ratio of the collapse load W, to the yield load Wy
was the shape factor v. However, for the fixed-ended beam just considered the

i

AR

s

SIMPLE CASES OF PLASTIC COLLAPSE 27

yield load Wy is 12Mp/vl, while the collapse load W, is 16Mp/I, so that the ratio
of W, to Wy is 4v/3. The greater margin between the yield and collapse loads for
the fixed-ended beam is a consequence of the single redundancy which exists in

this case.
“

16M, c b

12M, y~

12My| a
vi

o¥

o é, .

Fig. 2.6 Load-deflection relation for fixed-ended beam

2.3.1 Direct calculation of collapse load

It can be seen by inspection that there is only one possible collapse mechanism
for the fixed-ended beam, this being the symmetrical mechanism of Fig. 2.5(e).
This enables the plastic collapse load to be calculated directly by either a statical
or a kinematical procedure.

The statical procedure consists simply of sketching the bending moment
diagram at collapse, as in Fig. 2.5(d). It is seen that

Wl
s - M
w, = 16

The kinematical procedure is based on the collapse mechansim of Fig. 2.5(e).
Since the central deflection is 16/2, the average vertical displacement of the
uniformly distributed load W, is /6/4, so that the work done by the load during
this mechanism motion is W.I6/4. At each plastic hinge the work absorbed must
be positive, and is the product of M, and the magnitude of the hinge rotation.
Equating the work done to the work absorbed,

FWl0 = Mp(0) + My(20) + Mp(0) = 4Mp0

16M,

W, = .
© l
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2.3.2 Behaviour on unloading

If the load on the beam was removed after some rotation at the plastic hinges
had occurred at the collapse load W,, rotation at these hinges would cease and
the behaviour during unloading would be wholly elastic, according to the as-
sumed (M, k) relation of Fig. 2.1. Thus if W was increased to the point of col-
lapse ¢ in Fig. 2.6 and then removed, the unloading line would be cd, parallel to
the original elastic line Oy. The residual deflection at d can be calculated directly
from the information contained in Fig. 2.6 and Table 2.1, and is My /% [24E1.

The reason for the existence of this residual deflection is that the unloaded
beam would contain residual bending moments caused by the plastic hinge ro-
tations —Mpl/6FT at each end of the beam, which stay constant during the
unloading process. These residual bending moments can be calculated from
Equations (2.2) and (2.3), with W =0 and ¢, = — Mypl/6ET, and are found to be

M, = M, = 3M,.

It is readily verified that the same results are obtained by treating the unload-
ing as a further step in which

AW = —16Mp/l, A$, = O.

The fact that residual moments can be induced in a structure by previous
loading into the elastic-plastic range shows that the Principle of Superposition
cannot be applied in such cases. For instance, if the beam were reloaded from
the point d in Fig. 2.6, the beam would of necessity behave elastically along
dc until the collapse load was reached at c, since the elastic behaviour during
unloading is reversible. During such a reloading, the bending moments and
deflections produced by a given load will be different from those arising during
the first loading.

2.4 Effect of partial end-fixity

Perfect end-fixity of the kind assumed in the foregoing example (Fig. 2.4) can-
not be assured in practice. To examine the effect of partial end-fixity, consider a
uniform beam resting on four supports, as shown in Fig. 2.7(a). The central span
is of fixed length ! and carries a central concentrated load W, and the two outer
spans are each of variable length k/. The non-dimensional parameter k specifies
the degree of rotational constraint at the ends of the central span. With k=0
the central span becomes fixed-ended, while if k& is infinite this span is effectively
simply supported at its ends.

The only possible collapse mechanism is as shown in Fig. 2.7(b). The collapse
load W, is found by the kinematical procedure to be given by

!
We0 = Mp(0) + Mp(20) + Mp(0) = 4My0

4

R R
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The corresponding bending moment diagram at collapse is shown in Fig.
2.7(c). The collapse load W, can also be found by the statical procedure, and is
given by

Wl

—= = 2M,
8M,

We = _l_I_),

agreeing with the kinematical calculation.

*W

(a) S 7

Fig. 2.7 Continuous beam on four supports

These analyses show that the collapse load W, is independent of the degree of
end-fixity as specified by k; its value will be 8My/1, provided only that the con-
ditions at each end of the central span are such that the plastic moment can be
developed there. This illustrates one of the surprising features of the plastic
theory, namely that plastic collapse loads do not depend on the actual rigidity of
joints or supports. :

The behaviour under a steadily increasing load can be analysed by the step-
by-step process; details will not be given here. In the elastic range the greatest
bending moment occurs beneath the load, and the yield load Wy and the central
deflection & at yield are
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W _ 8Mp|3+2k
Y71 344k
_ MP|3+8k

Y T 24EI13 + 4k |

Above the yield load rotation occurs at the central plastic hinge. The bending
moments at the two middle supports reach the value —M;, when W= W,, and
the corresponding deflection §, at the point of collapse is

_ M

= + 4k).
¢ 24EI a )

Load-deflection relations derived from these results are shown in Fig. 2.8.
When k=0 (the fixed-ended condition), the yield load Wy coincides with the
collapse load W,, showing that in this special case all three plastic hinges form
simultaneously. As k increases, both W, and the slope of the load-deflection
relation between Wy and W, are progressively reduced, so that the deflection 5,
at the point of collapse becomes larger. However, plastic collapse always occurs
at the same load 8My,// regardless of the value of k.

For values of k in excess of, say, 3, unacceptably large deflections would
develop before the plastic collapse load was reached. In such cases the theoretical

Fig. 2.8 Load-deflection relations for beam of Fig. 2.7

collapse load would be of little interest to the designer, since the normal purpose
of calculating the collapse load is to determine the load at which large deflections
are imminent. This was pointed out by Kazinczy (1934), who discussed load-
deflection relations similar to those in Fig. 2.8 for a beam with partial end-fixity
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carrying a uniformly distributed load. When joint flexibilities are large, it is
obviously necessary to supplement the calculation of the plastic collapse load by
an estimate of the deflections at the point of collapse. Methods for doing this are
given in Chapter 5.

In the extreme case when £ is infinite, the deflection 8, at the point of col-
lapse also becomes infinite, and so the slope of the load-deflection relation be-
tween yield and collapse becomes zero. The load-deflection relation for this case
thus appears to correspond to a collapse load of only 4M,, /I, which would be the
collapse load for a simply supported beam of span [, whereas the calculated
plastic collapse load is still 8M,/I. However, this apparent paradox, which was
pointed out by Stiissi and Kollbrunner (1935), is resolved when it is realized
that the horizontal load-deflection relation which occurs in this case when W=
W, is merely the limiting case in which the slope of the load-deflection relation
between yield and collapse tends to zero as k tends to infinity.

Stiissi and Kollbrunner carried out tests of this kind on small beams of
I-section, 4.7 cm X 3.6 cm. In these tests / was 60 ¢m, and values of k 0f 0.5, 1,2
and 3 were used. The average of their observations from two tests of this kind
with k = 2 are shown in Fig. 2.8, and it will be seen that the comparison between
the observations and the theoretical relation is good.

Further tests of a similar nature were carried out by Maier-Leibnitz (1936). A
type of test which is similar in principle is obtained by applying a central vertical
load to arectangular portal frame (as in Fig. 2.9(a) with H = 0), in which case the
horizontal member functions as a partially fixed-ended beam. Tests of this kind
have been described by Girkmann (1932), Baker and Roderick (1938), and also
by Hendry (1950), who showed that increasing the height of the frame while
leaving the span constant did not affect the collapse load but increased the
deflections prior to collapse. Similar tests, but with symmetrical two-point
loading, have been described by Rusek, Knudsen, Johnston and Beedle (1954).
The effect of partial end-fixity on the design of beams subjected to uniformly
distributed loads, whose ends are encased in reinforced concrete or masonry, was

the subject of a theoretical and experimental investigation by Kazinczy (1934).

The behaviour of a full-scale portal frame whose feet were supported by short
piled footings was investigated experimentally by Baker and Fickhoff (1955),
who showed that for this frame the collapse load was not affected by the partial
fixity of the feet to any appreciable extent.

2.5 Rectangular portal frame

The last structure to be considered is the rectangular portal frame whose dimen-
sions and loading are shown in Fig. 2.9(a). All the members of this frame are
uniform with flexural rigidity £7 and plastic moment My. The joints at sections
2 and 4 are rigid, and the columns are rigidly built-in at their bases 1 and 5. The
sign convention for bending moment, curvature and hinge rotation is again that
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positive values correspond to tensile stresses or strains in the fibres adjacent to
the broken line.

—
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(b) (c)

Fig. 2.9 Rectangular portal frame

(a) Dimensions and loading
(b) Virtual beam mechanism
(¢) Virtual sway mechanism

Within each of the four segments of the frame which are straight and free
from external load, namely 12, 23, 34 and 45, the shear force must be constant.
The bending moment must therefore vary linearly along each of these segments.
The values of the bending moments My, M, , M5, My and M5 at the five num-
bered cross sections therefore specify the bending moment distribution through-
out the frame. Moreover, since the bending moment cannot exceed M, in
magnitude at any cross section, it follows that plastic hinges can only occur at
the ends of these segments. Thus, the only possible locations of plastic hinges are
the five numbered sections. (This excludes the special case in which the shear
force is zero in a segment, so that the bending moment is constant along the
segment.)

The frame has three redundancies, for if a cut were made at any section, and
the shear force, axial force and bending moment were all specified at this section,
it would become statically determinate. It follows that there must be two
equations of equilibrium connecting the five bending moments. For the deter-
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mination of the bending moments which occur when the frame is wholly elastic
there must therefore be three equations of compatibility. For situations in which
some plastic hinges have developed, it is still possible to develop three appropri-
ate equations of compatibility, and the two equations of equilibrium will still
apply.

The equilibrium and compatibility equations will now be derived using the
Principle of Virtual Work. This procedure has certain advantages, and will be
used again in later chapters.

2.5.1 Principle of Virtual Work

The Principle of Virtual Work for frames involves force systems (of loads and
bending moments) which satisty the requirements of equilibrium and displace-
ment systems (of deflections, curvatures and hinge rotations) which satisfy the
requirements of compatibility. For the type of problem under consideration it
takes the form

Y ps =fMde + Y Mp. (2.11)

In this equation M is any distribution of bending moment satisfying the require-
ments of equilibrium with concentrated external loads P. k denotes any distri-
bution of curvatures which is compatible with hinge rotations ¢ and deflections
8. The summation on the left-hand side covers all points of application of exter-
nal loads. On the right-hand side the integral covers all members of the frame,
distance s being measured along each member, and the summation covers all
sections where there may be a hinge rotation.

The equation is valid provided that the force system (P, M) satisfies the
requirements of equilibrium and the displacement system (8, «, ¢) satisfies the
requirements of compatibility. In addition, the sign convention for § must be
consistent with that for P, so that the direction of a positive force P must be the
same as the direction of the positive corresponding displacement §. Similarly,
the sign conventions for both k and ¢ must be consistent with that for M.

Equation (2.11) can be used in two ways. In the first of these the displace-
ment system (8%, k*, ¢*) is virtual (throughout this Section, asterisks are used to
denote virtual systems, either of displacements or of forces). This means that the
displacements, curvatures and hinge rotations can be chosen arbitrarily, subject
only to the requirements of compatibility, and need not be ascribable to any
possible form of loading. This form of the principle is often referred to as the
Principle of Virtual Displacements, and its use generates equations of
equilibrium.

The other possibility is to use a virtual force system (P*, M*). Here the forces
and moments are chosen arbitrarily, subject only to the requirements of equilib-
rium. This is the Principle of Virtual Forces, and its application results in
equations of compatibility.
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Both forms of the principle will now be used to develop the equations of
equilibrium and of compatibility which are needed for the step-by-step analysis
of the frame of Fig. 2.9(a).

2.5.2 Equilibrium equations by virtual displacements

The two equilibrium equations will be derived using the virtual displacement
systems depicted in Fig. 2.9(b) and (c). These represent a beam mechanism and a
sway mechanism, respectively. The hinges are not plastic hinges, but are intro-
duced to permit the small displacements which are shown to take place while the
members between the hinges remain straight. Because the curvature is every-
where zero, Equation (2.11) reduces to

Y Ps* =), Mg*.

The equilibrium system consists of the loads H and V shown in Fig. 2.9(a),
together with bending moments at the five numbered sections which are in
equilibrium with these loads. Using this system in conjunction with the virtual
displacement systems of Fig. 2.9(b) and (c) in turn gives

VIy = My(— ) + Ma(+29) + Ma(—¥)
HlYy = M;(— )+ M (+ ) + Ma(— ) + Ms(+ ).
Cancelling  throughout gives the two equilibrium equations A
Vi = —M, +2M;3 — M,. (2.12)
Hl = _Ml +M2 —M4 +M5. (213)

These are equations of equilibrium which must be obeyed regardless of whether
the frame is behaving elastically or has become partly plastic. Equation (2.11) is
independent of material properties, and these properties did not enter into the
derivation of Equations (2.12) and (2.13).

2.5.3 Compatibility equations by virtual forces

The three compatibility equations are found by using virtual force systems in
which all the external P* are zero. The bending moments are then referred to as
residual moments and denoted by the symbol m™. Equation (2.11) becomes

0 = [m*xds + X m*p. (2.14)
The actual curvature k at any section is related to the actual bending mo-

ment M at that section by the elastic relation k = M/EI, so that Equation (2.14)
becomes
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m*M
EI

Within each of the linear segments 12, 23, 34 and 45, both m* and M vary
linearly with distance s, along the member. In these circumstances the integral in
Equation (2.15) is readily evaluated for a typical uniform straight segment AB of
length L, and is

A m*M L

s B % T emr

0 =

ds+ ). m*o. (2.15)

[ma(2M4 + Mp) + mi(2Mp + M4)]. (2.16)

Equation (2.15), taken in conjunction with Equation (2.16), can be used to
generate three compatibility equations, provided that three linearly independent
residual moment systems can be identified. To achieve this, it is noted that any
set of residual moments must obey the two equations of equilibrium (2.12) and
(2.13), with the loads ¥ and H each zero, giving

—HMy + 2m3 — Mg = 0. (217)
—mi +my —my +ms = 0. (2.18)

Following Heyman (1961), the three systems used are as shown in the first

three lines of Table 2.2,

Table 2.2 Virtual force and actual displacement systems

Section 1 2 3 4 5

Virtual force systems

m* (i) 1 1 0.5 0 0
(i) 0 0.5 1 1
(iii) 0 1 1 1 0

M* ) 0 0 0 0

Actual displacement system

Elx=M M, M, M, M, M;

¢ $1 ®2 ?3 $q Ps

It is readily verified that each of the three residual moment systems (i), (ii) and
(iii) satisfies Equations (2.17) and (2.18), and that they are linearly independent.

The actual displacement system is shown in the last two lines of Table 2.2.
When used in conjunction with the virtual residual moment system (i), Equations
(2.15) and (2.16) give

6—&[(31141 +3M,) + (2.5My + 2M3) + (M +0.5Ma)] + ¢; + b, +0.565 = 0



36 THE PLASTIC METHODS OF STRUCTURAL ANALYSIS

and this reduces to

3M, + 5.5M, + 3M; + 0.5M, + 6EI(¢; + ¢, +0.5¢3)/ = 0.

2.19)
Similarly, the use of the residual moment systems (ii) and (iif) gives
0.5M, + 3M5 + 5.5M, + 3Ms + 6EI(0.5¢3 + ¢4 + ¢s)/l = 0.
(2.20)
M, + 5M, + 6My + 5My + Ms + 6EI($, + 3 + ¢4)f1 = 0.
(2.21)

Equations (2.19)—(2.21) are the three equations of compatibility. These
equations, and the two equations of equilibrium (2.12) and (2.13), may be
written more compactly and in incremental form as follows:

-

o -1 2 —1 o|lanm,

—1 1 0 -1 1||am,
3 553 050

0 05 3 55 3||am,
1

15 6 5 AM; |

0 0 o o of[ae] [ar]
00 0 0 0f|ag| |am

6EI

+=[1 1 os 0 ofags| =] o
00 051 1|]|ag 0
01 1 1 0f]ags 0 (2.22)
B . L

where the prefix A is used to denote changes in bending moments, hinge ro-
tations and loads. The two equilibrium equations are those whose coefficients
appear above the broken line.

These five equations may be used to trace the behaviour of the frame when
subjected to proportional loading,

V=H=W,

up to collapse, starting from a condition in which the frame is unloaded and free
from stress. Because the ideal (M, k) relation of Fig. 2.1 is assumed,

either MI<M,, AM # 0, Ap =0
or M| = My, AM =0, A¢p #0,

so that the Equations (2.22) only involve five unknowns in any step.
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2.5.4 Step-by-step analysis of proportional loading

As W increases, the frame behaves elastically in the first instance, so that the
changes of hinge rotation A¢,, A¢,, Ads, A¢, and A¢s are all zero. The
equations then have the solution

AM, = —02125AWI
AM, = —0.0125AWI
AM; = 03AWI

AM, = —03875AWI
AM; = 04125AWL.

The greatest bending moment is 0.4125AW! at section 5. This reaches the
value M, at the yield load Wy, which is given by

0.4125Wyl = M,
Wy = 2.424My/l.

The distribution of bending moment is then as shown in the first line of Table
23.

When W increases above the yield load to, say. Wy + AW, the plastic hinge
which has formed at section 5 undergoes rotation while M5 remains constant at
the value M},. Thus, during this step

M5 = Mp, AMS - 0, A¢5 >0
Apy = APy = Apy = Agq = 0.
Equations (2.22) then have the solution

il

Il

AM; = —0.468AWI
AM, = 0.108AW!
AM; = 0342AWI
AM; = —0.424AW]
Aps = 0.209AWI*/EL

During this step the number of redundancies has dropped from 3 to 2, be-
cause one bending moment increment is now known, namely AMs = 0. There
are therefore only four statical unknowns, AM,, AM, , AMy and AM,. The two
equations of equilibrium therefore need to be supplemented by only two of the
equations of compatibility to determine these four bending moment increments.
However, there is now a geometrical unknown, A¢s, and this is found from the
third equation of compatibility.



Table 2.3 Rectangular frame: proportional loading
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—0.030
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0.197
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0
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1
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A plastic hinge of negative sign forms next at section 4, where the bending
moment at the start of this step was —0.939M,,. The value of AW for the step is
thus given by

—0.939M;, —0.424AWI = —M,
AW = 0.143M,/l.

With this value of AW the increments which occur in this step are shown in the
second line of Table 2.3, and the resulting situation is given in the third line.

During the next step rotations occur at the plastic hinges at both sections 4
and 5, so that

My = =My, AM, = 0, A¢s <0
Ms =M,, AM; =0, A¢s>0
Apy = Apy = A¢; = 0.
The corresponding solution of Equations (2.22) is
AMI = —0.85AWI
AM, = 0.15AWI

AM; = 0.575AW
Aps = —0.558AWI?ET
Aps = 0258AWI/EL

There are only three statical unknowns, AM;, AM, and AM; in this step, so
that the number of redundancies has dropped to one. Only one equation of
compatibility needs to be used in conjunction with the two equations of equilib-
rium to determine these three unknowns, but the remaining two equations of
compatibility are required to find the values of the two geometrical unknowns
A@4 and Ags.

The next plastic hinge forms at section 3, where the bending moment at the
start of this step was 0.776My. The value of AW for the step is therefore given
by

0.776M, + 0.57SAWI = M,
AW = 0.390M,/l.

The corresponding increments during this step are given in the fourth line of
Table 2.3, and the fifth line shows the situation at the end of the step.
The ensuing step is characterized by

M3 = Mp, AM3 = 0, A¢3 >0
M, = —M,, AM, =0, Ay <0
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MS = Mp, AMS = 0, A¢5 >0
Apy = Ap, = 0.

The structure is now statically ‘determinate; the two equilibrium equations
suffice to determine AM; and AM,, and the three compatibility equations fur-
nish values of A¢,, Aps and Ags. The solution is

AM, = —2AW
AM, = —AWI
Ap; = 3.833AWIX/EI
Ads = —2.66TAWI*/ET
Ads = 0.833AWI/EL

At the end of this step a plastic hinge forms at section 1, where the bending
moment at the start of the step was —0.913M,. The value of AW for this step is
given by

—0.913M, —2AWI
AW

— Mp
0.043My/1.

I

The changes which occur during this step and the final situation are given in the
sixth and seventh lines of Table 2.3.

The final load is 3My/I, and at this load there are four plastic hinges. This
reduces the frame to the mechanism which is illustrated in Fig. 2.10. The col-
lapse load is thus W, = 3My/l. Since Wy = 2.424My/l, the ratio of W, to Wy in
this case is 3/2.424, or 1.24. If the effect of the shape factor v is allowed for,
this ratio becomes 1.24v.

2.5.5 Deflections by unit load method

The analysis will be completed by the calculation of a particular deflection at
the end of each step. This is achieved by using an appropriate virtual force
system in conjunction with the actual system of displacements. If the deflection
sought is §, all that is necessary is to make the corresponding P* unity, with all
other external loads zero. This is the well-known unit load method; reference to
Equation (2.11) shows that

M*M

o =) Fr

ds+ Y M*9, (2:23)

where M* represents any distribution of bending moments satisfying the require-
ments of equilibrium with the virtual unit load.

For example, let /1 be the horizontal deflection at section 4 (Fig. 2.9(a)) corre-
sponding to H. Examination of the equilibrium equations (2.12) and (2.13)
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Fig. 2.10 Collapse mechanism for frame of Fig. 2.9(a); V=H=W

shows that the simple system of bending moments My =—I, M =M} =Mj =
MZ =0, satisfies the requirements of equilibrium with loads H=1 and V' =0.
This system, which is entered in the fourth line of Table 2.2, can therefore be
used in Equation (2.23) to calculate /. The integral in Equation (2.23) can be
evaluated using Equation (2.16), with M* replacing m*, and the result which is
obtained is

12

h =
6ET

Values of k are given in Table 2.3, and Fig. 2.11(a) shows the relationship
between W and A for proportional loading. Each point at which a fresh plastic
hinge forms is marked with the number of the relevant cross section, in accord-
ance with Fig. 2.9(a).

2.6 Invariance of collapse loads

If a structure is subjected to more than one load, the loads will only rarely in-
crease in proportion to one another. Fortunately, wide variations can occur in
the manner in which the various loads are brought up to their collapse values
without affecting the collapse load. Thus for the frame just considered, collapse
occurs under proportional loading when H =V =3M,/l. To take an extreme
case of loading which is not proportional, suppose that a load V = 3M,/l is first
applied, and then held constant while H is increased steadily from zero. A step-
by-step analysis shows that the load V' = 3M,,/ is borne by wholly elastic action,
and that A must then be increased to the value 2.133My /I before the first plastic
hinge forms. This hinge forms at section 4, although under proportional loading
the first hinge formed at section 5. The load-deflection relation is shown in Fig.
2.11(b). When a fourth plastic hinge is formed at section 1 the value of H is
3M,/I; collapse then occurs by the same mechanism as before. Thus the collapse
load condition for this case, H= V= 3M,/l, is the same as for proportional
loading. The only difference between the two cases is in respect of the load-
deflection relation prior to collapse.
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Fig. 2.11 Load-deflection relations for frame of Fig. 2.9(a)

(a) Proportional loading: H=W, V =W
(b) V = 3Mp/l, followed by H=W ‘
(c) Feet spread apart, followed by proportional loading

The plastic collapse load is not affected by residual stresses, whether these be
due to welding, imperfect fit of members, plastic hinge rotations which have
occurred during previous loading or the movements of supports. To illustrate
this point, suppose that in the frame of Fig. 2.9(a) the bases had spread apart,
while the columns remained fixed in direction, the spread being just sufficient to
cause the bending moments at the bases 1 and 5 to reach the value —M,, in the
unloaded condition. An elastic analysis shows that the beam is then subjected to
a uniform sagging bending moment M;/3. If the loads H and V are then in-
creased proportionately, rotation of a plastic hinge at section 1 begins immedi-
ately. However, the bending moment at section 5 undergoes a positive change, so
that there is no immediate plastic hinge rotation at this section. The load-
deflection relation is shown in Fig. 2.11(c). It is again found that collapse occurs
when H =V =3M,/l, although the load-deflection relation differs from the
other two cases, and the sequence of formation of hinges is also quite different.

The fact that residual stresses have no effect on the value of the plastic col-
lapse load for a given structure was pointed out by Kazinczy (1938). Direct
experimental confirmation of this point was provided by the work of Maier-
Leibnitz (1928) and of Horne (1952) on continuous beams, in which the effect
of initial lowering of supports on the collapse load was shown to be negligible.
Moreover, any welded frame will contain residual stresses due to the welding
process unless a stress-relieving treatment is used, so that indirect confirmation
has been supplied by the lack of any noticeable effect in the many tests which
have been carried out on such structures.
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The invariance of the plastic collapse load stems from the fact that collapse
can occur only when a sufficient number of plastic hinges have formed to trans-
form the structure into a mechanism. The rectangular frame just considered has
three redundancies. If at any stage of the loading there are three plastic hinges,
at each of which the bending moment is known, the frame becomes statically
determinate, so that the remaining bending moments can be calculated in terms
of the loads from the equations of equilibrium. If a fourth plastic hinge then
forms, the frame is reduced to a mechanism, and the knowledge of the value of a
fourth bending moment enables the loads to be calculated, provided of course
that the value of each load is specified as a multiple of a single load W. Thus
once the mechanism of collapse is known, the collapse load W, can be calculated
by considering only the equations of equilibrium. These equations are indepen-
dent of residual stresses, the order of application of loads, the imperfect rigidity
of joints or the sinking of supports, and so the collapse load is unaffected by
such factors.

To illustrate this point, consider the collapse mechanism of Fig. 2.10. The
bending moments at the plastic hinge positions are

Ml = _Mp, M3 = Mp3 M4 = —Mp’ MS = MD'

Substituting these values in the two equations of equilibrium (2.12) and (2.13),
with H =V = W,, it is found that
—M, +3M, = W,]
My +3M, = Wl
so that W, = 3My/l and M, = 0. This value of W, agrees with the value found by
the step-by-step calculations.
The collapse load can also be calculated directly by a kinematical procedure.

Equating the work done to the work absorbed at the plastic hinges for the mech-
anism of Fig. 2.10 gives

Weld + Weld = Mp(0) + Mp(20) + Mp(20) + Mp(8)

W0 = 6Myp0
W, = 3]‘%

As will be seen from these calculations, the determination of the collapse load
once the actual collapse mechanism is known is remarkably swift. However, the
collapse mechanism cannot usually be foreseen unless the structure is extremely
simple. As already remarked, in the case of the fixed-ended beam of Fig. 2.4
there was only one possible collapse mechanism, which must therefore be the
actual collapse mechanism. However, in the example just considered, there are
three possible collapse mechanisms. One of these is the mechanism of Fig. 2.10,
which was shown by the step-by-step analysis to be the actual collapse mechan-
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ism. The other two possibilities are the mechanisms of Fig. 2.9(b) and (c), with
plastic hinges in place of the virtual hinges shown. If the step-by-step calculations
had not been performed it would not be known a priori which of these three
mechanisms was the actual collapse mechanism. In more complicated frames
there is a much wider choice of possible collapse mechanisms, and so it is necess-
ary to have some guiding principles to enable the actual collapse mechanism to
be identified. The available principles will be stated and discussed in Chapter 3.

2.7 Plastic design

It is now widely recognized that the rational approach to the design of a struc-
ture is based on considering the various limit states at which the structure
becomes unfit for use. Some limit states are associated with serviceability, such
as the development of deflections large enough to damage internal finishes in
buildings. Others are concerned with catastrophic collapse, due for example to
fatigue failure, brittle fracture or buckling. One such ultimate limit state for
steel frames is plastic collapse, and there are many practical cases in which this
limit state governs the design. In such cases a plastic design procedure is
appropriate.

Once the shape of a frame and the lengths of its members are decided, the
characteristic loads can be determined. Different types of loading will be known
with different degrees of accuracy. For instance, dead loading can be determined
more precisely than imposed loading. The pressure distributions due to a given
incident wind speed and direction are difficult to assess, and the wind speed
itself has to be selected on the basis of statistical data (CP3 (1972) chapter V).

A margin of safety is provided by multiplying the characteristic loads by load
factors. Different load factors may be used for different types of loads and their
possible combinations. The task of the designer is then to select the cross sections
of the members so that plastic collapse would just occur under the factored
loads. With an appropriate choice of load factors, the probability of plastic col-

lapse actually occurring is made sufficiently remote to be acceptable. Load fac-

tors are usually specified in relevant Codes of Practice.

When plastic design methods are appropriate, they have a clear advantage over
elastic methods. This is apparent from a consideration of the results obtained for
the frame shown in Fig. 2.9(a). Under proportional loading, H =V = W, it was
found that W./Wy = 1.24p. Taking v = 1.14, a typical value for an I-section,
We/Wy =141,

In this particular case, the plastic collapse load is thus 41 per cent greater
than the load at which yield first occurs, when elastic analysis ceases to be valid.
A design based on elastic analysis could not make use of this additional reserve
of strength beyond the elastic limit, and would therefore be less economical than
a plastic design. The margin of strength which exists above Wy depends on the
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particular structure and loading, but the example given is fairly typical. Plastic
design is therefore to be preferred on the score of economy, quite apart from the
obvious rationality of basing the design on a direct consideration of the relevant
ultimate limit state.

A further advantage of plastic design which has emerged is that the plastic
collapse load is independent of such factors as imperfect rigidity of joints, the
movement of supports and the presence of residual stresses, all of which have a
profound effect on the elastic stress distribution. Finally, plastic collapse analysis
is much simpler than elastic analysis, as will become apparent in Chapters 3
and 4.
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Examples

1. A uniform beam AB of length ! and plastic moment My, is simply supported at
its ends A and B. Calculate the collapse load by both the statical and kinematical
methods for the following loadings:

(a) a uniformly distributed load W
(b) a concentrated load W at a distance //3 from A.

2. For the beam of example 1, loading case (b), use the kinematical method to
find the collapse load if the end conditions were altered as follows:

(a) A: simply supported B: fixed-ended
. (b) A: fixed-ended B: simply supported
(¢) A and B both fixed-ended

3. A uniform beam of length / and plastic moment M, is fixed at both ends. It
carries a uniformly distributed load W and also a central concentrated load W.
Find the value of W which would cause plastic collapse.

4. A uniform beam of length / and plastic moment M}, is fixed at both ends. It
_carries three concentrated loads, each of magnitude W, at distances //4, I/2 and
31/4 from one end. What value of W would cause plastic collapse?

5. A rectangular portal frame ABCD has vertical columns AB and DC each of
height # and the horizontal beam BC is of span /. The feet A and D are rigidly
built-in, and the joints B and C are rigid. All members of the frame are uniform,
the plastic moment being M,,. A concentrated vertical load W is applied to the

beam at a distance ul from the joint B. Find the value of W at which plastic

collapse would occur.

3 Basic Theorems and Simple Examples

3.1 Introduction

As shown in Chapter 2, the plastic collapse load can be calculated very simply
once the mechanism is known. For a few simple structures there is only one
possible collapse mechanism, but in most cases this is not so. There is therefore a
need for theorems which enable the actual collapse mechanism to be selected
from among the various possibilities. The purpose of this chapter is to state these
theorems and give some examples of their application. A description of some
general methods for the determination of plastic collapse loads is deferred until
Chapter 4.

The basic assumption is made that whenever the plastic moment M, is at-
tained in a member, a plastic hinge forms which can undergo rotation of any
magnitude, provided that the bending moment stays constant. For the present it
is assumed that the value of My, is a definite constant for a given member, and
does not depend on the axial and shear forces which the member may be called
upon to sustain. In fact, the value of the plastic moment is affected by axial and
shear forces, and also by such factors as the local stress concentrations which
occur beneath the points of application of concentrated loads. However, these
effects are often negligibly small, and their discussion is deferred until Chapter 6.

It is also assumed that the deflections of a frame under consideration are
small enough for the equations of statical equilibrium to be sensibly the same as
those for the undistorted frame, an assumption which also underlies conventional
methods of elastic analysis.

3.2 Statement of theorems

For each of the simple examples considered in Chapter 2, it was evident that
when the collapse load was reached a sufficient number of plastic hinges had
formed to transform the structure into a mechanism. The deflections could then
increase under constant load due to rotations occurring at these hinges, while the
bending moments at the hinges remained constant at their fully plastic values.
From a consideration of the requirements of statical equilibrium it followed that
the bending moment distribution throughout the structure stayed unchanged
during collapse. It was also evident that during plastic collapse the work done by
the external loads was equal to the work absorbed in the plastic hinges. These re-
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sults were obviously true for the simple cases considered, but it is desirable that
they should be established for the general case. Formal proofs were supplied by
Greenberg (1949) using the terminology of truss-type structures; an adaptation
of his argument to the case of framed structures is given in Appendix A.

3.2.1 Static theorem

In general, there will exist many distributions of bending moment throughout a
redundant frame which satisfy all the conditions of statical equilibrium with a
prescribed set of external loads. Greenberg and Prager (1952) termed distri-
butions of this kind statically admissible. In addition, a distribution of bending
moment in which the plastic moment is not exceeded anywhere in the frame is
described as safe. A necessary condition for a frame to be capable of carrying a
given set of loads is evidently that there must be at least one safe distribution of
bending moment throughout the frame which is statically admissible with these
loads. The static theorem states that this condition is also sufficient to ensure
that the frame can carry the loads.

For a formal statement of the theorem, suppose that a frame is subjected to
loads APy, AP, . .., APy, each load being applied at a given point in a specified
direction. Py, P,, ..., P, are presumed fixed, and may be thought of as the
characteristic loads. X is then the load factor. The loads are specified completely
by the value of A, and can be referred to collectively as the set of loads A. The
load factor which would cause plastic collapse is denoted by A, this value of A
being termed the collapse load factor. The static theorem can now be stated as
follows:

Static theorem. If there exists any distribution of bending moment throughout a
frame which is both safe and statically admissible with a set of loads A, the value
of A must be less than or equal to the collapse load factor A.

A corollary of this theorem is that if for a given set of loads X it can be shown
that no distribution of bending moment exists which is both safe and statically
admissible, this value of A must be greater than the collapse load factor A,. It fol-
lows that a frame can actually carry the highest loads which could conceivably
be carried without collapse, since A is the highest load factor at which statical
equilibrium can be maintained without the plastic moment being exceeded
somewhere in the frame.

The static theorem was first suggested by Kist (1917) as an intuitive axiom. A
proof was supplied by Gvozdev (1936), and later by Greenberg and Prager
(1952) and also by Horne (1950), and is given in Appendix A.

A further corollary concerns the effect of strengthening a frame by increasing
the plastic moment of one or more of the members. This cannot result in a de-
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crease of the collapse load factor. Thus if a frame will collapse at a load factor
Ac, there must be at least one distribution of bending moment which is safe and
statically admissible with the set of loads A.. This same distribution of bending
moment must remain safe and statically admissible with these loads if the plastic
moment is increased at one or more cross sections, for the requirements of
statical equilibrium remain unchanged, and if the plastic moment was not ex-
ceded anywhere in the original frame it will certainly not be exceeded in the
strengthened frame. This result was stated by Feinberg (1948) as an axiom, no
proof being offered.

3.2.2 Kinematic theorem

If the actual collapse mechanism is known for a given frame and loading, the col-
lapse load factor can be found by equating the work done by the loads during a
small motion of the collapse mechanism to the work absorbed in the plastic
hinges. When the actual collapse mechanism is not known, a work equation of
this kind can be written down for any assumed mechanism. A value of A will
then be obtained which corresponds to the assumed mechanism. The kinematic
theorem is concerned with such corresponding values of X, and can be stated as
follows: ‘

Kinematic theorem. For a given frame subjected to a set of loads A, the value of
A which corresponds to any assumed mechanism must be either greater than or
equal to the collapse load factor A.

A corollary is that if the values of A corresponding to all the possible collapse
mechanisms are determined, the actual collapse load factor A, will be the
smallest of these values.

A formal proof of this theorem is given in Appendix A. It was established by
Gvozdev (1936), and also by Greenberg and Prager (1952), who used a physical
argument based on Feinberg’s axiom which itself has been shown to be a direct
consequence of the static theorem. Consider a particular frame A subjected to a
set of loads A, the collapse value of A being A.. Let any mechanism be assumed
and the work equation written down, giving a corresponding value of A. Now
imagine another frame B which is derived from frame A by increasing the plastic
moments indefinitely at all cross sections except those where plastic hinges
occur in the assumed mechanism, where they remain unaltered. The actual col-
lapse mechanism for the strengthened frame B must be the mechanism originally
assumed for frame A, since no other mechanism is possible. The actual collapse
load factor for frame B, obtained from the work equation, must therefore be A.
By Feinberg’s axiom the collapse load factor A, for frame A cannot be greater
than the collapse load factor A for the strengthened frame B, and this establishes
the kinematic theorem.



50 THE PLASTIC METHODS OF STRUCTURAL ANALYSIS

3.2.3 Unigueness theorem

The static and kinematic theorems can be combined to form a uniqueness the-
orem. Thus, it is known from the static theorem that for any value of A above
Ae, there is no distribution of bending moment which is both safe and statically
admissible. Moreover, it is known from the kinematic theorem that there is no
mechanism for which the corresponding load factor is less than A.. Combining
these results, the following theorem can be stated:

Uniqueness theorem. For a given frame and set of loads A, if there is at least one
safe and statically admissible bending moment distribution, in which the plastic
moment occurs at enough cross sections to produce a mechanism, the corre-
sponding load factor will be the collapse load factor A.

This theorem was proved by Horne (1950). A convenient summary of this
and the two earlier theorems is:

Statical conditions

Ae
\ A=A

A<
Kinematical conditions A=A,
where the statical and kinematical conditions are those specified in the two
corresponding thorems.

3.3 Hlustrative example

The significance of the theorems will now be discusssed, using as an example the
frame whose dimensions and loading are shown in Fig. 3.1(a). Each member of
this frame is uniform and has a plastic moment 25 kNm; it is required to find
the collapse load factor A.. The sign convention for bending moments and hinge
rotations will again be that positive values correspond to tensile stresses or
strains in the fibres adjacent to the broken line.

The frame itself, although not the loads, is identical with the frame discussed
in Section 2.5 (see Fig. 2.9). As pointed out in that Section, plastic hinges can
only occur at the five numbered cross sections shown in Fig. 3.1(a). Moreover,
there are only three possible collapse mechanisms; these are shown in Fig.
3.1(b), (c) and (d).

The small motion of the sway mechanism depicted in Fig. 3.1(b) is com-
pletely defined by the clockwise rotation of the left-hand column, and the hinge
rotations and the horizontal displacement of the beam are as shown. Fig. 3.1(c),
which shows the kinematics of the beam mechanism, is self-explanatory. The
third mechanism, shown in Fig. 3.1(d), results if the motions of the sway and
beam mechanisms are added, and is referred to as the combined mechanism.
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Fig. 3.1 Rectangular portal frame

(a) Dimensions and loading. Units: m, kN
(b) Sway mechanism

(c) Beam mechanism

(d) Combined mechanism

3.3.1 Equilibrium equations by virtual displacements

In discussing this problem, use will be made of the equations of equilibrium,
which are obtained using the Principle of Virtual Displacements, as explained in
Section 2.5.2. The equilibrium system consists of the applied loads and any set
of bending moments M, , M, , M5, M, and M; which satisfies the requirements
of equilibrium with these loads.

The frame has three redundancies, and so there must be two equations of
equilibrium relating these five bending moments to the applied loads. These two
equations are derived using as virtual displacement systems the sway and beam
mechanisms of Fig. 3.1(b) and (c), for this purpose regarding the hinges not as
plastic hinges, but as virtual hinges which permit the small virtual movements
defined.

Equating the virtual work done by the loads to the virtual work absorbed at
the hinges in each of the two mechanisms,

60N = My (—0) + My (+0) + My (—0) + Ms (+6). (3.1)
60N = —M, + M, — M, + M. (32)
40N0 = M, (—6) + M3 (+20) + M,y (—0). (3.3)
400 = —M, +2M; —M,. (3.4)
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3.3.2 Sway mechanism

Consider the sway mechanism, Fig. 3.1(b). A kinematical analysis will first be
carried out, in which the mechanism is treated as though it were the actual col-
lapse mechanism. During the small motion of this mechanism which is shown,
the horizontal load 15X moves through a distance 40 and so does work 60A8.
(For convenience, units are not stated in the analysis, as they are self-evident.)
To the first order of small quantities the beam does not move vertically, and so
the vertical load does no work. At each plastic hinge the work absorbed must be
positive, regardless of the sign of the hinge rotation. There are four plastic
hinges, at each of which the rotation is of magnitude 8, so that the work ab-
sorbed is 256. Equating the work done to the work absorbed,

60N) = 250 + 250 + 250 +250 = 1000. 3.5)
A = 1.667. (3.6)

If this were the actual collapse mechanism, this would be the value of A.. In
fact, the calculation gives the value of \ corresponding to this mechanism.
According to the kinematic theorem, this value of A is either greater than or
equal to A,

I

e < 1.667, (3.7)

so that the analysis establishes this upper bound on the value of A..

Now consider a statical analysis. If this were the actual collapse mechanism,
the bending moments at the four plastic hinges would each be of magnitude 25,
and their signs would be the same as the signs of the plastic hinges, so that

My = —25, M, = +25, M, = —25, Ms = +25. (3.8)

These are the four bending moments appearing in Equation (3.2). Substituting
in Equation (3.1), from which Equation (3.2) was derived, it is found that

G0N0 = —25(—0) + 25(+0) — 25(—0) + 25(+6)
250 +2560 +250 +256 = 1000, (3.9)

I

and this is identical with the kinematical Equation (3.5).

This identity between the statical and kinematical analyses is both general
and of fundamental importance. In this particular case it stems from the fact
that the equation of equilibrium, Equation (3.1), is derived from the sway
mechanism of Fig. 3.1(b), treated as a virtual mechanism, and the work equation
(3.5) is derived from the same mechanism treated as an assumed plastic collapse
mechanism. The plastic moments involved, Equations (3.8), must all be of the
same sign as the corresponding plastic hinge rotation, as is seen in Equation
(3.9). It follows that all the products on the right-hand side of this equation
must be positive. This is the equivalent of the physical statement used in the

BASIC THEOREMS AND SIMPLE EXAMPLES 53

kinematical analysis, namely that the work absorbed at a plastic hinge is always
positive, regardless of the sense of its rotation.
A further important deduction can be made from Equation (3.2),

60N = —M, +M, — M, + M. (3.2)

Each of the four bending moments appearing on the right-hand side of this
equation must lie between the limits £25. The highest conceivable value which A
could have, viewed from the standpoint of this equation alone, is therefore
obtained by setting

My = =25, M, = +25, M, = —25, M, = +25.

These are the values which correspond to the sway mechanism, as specified in
Equations (3.8). It can be concluded that

60N <100; A<1.667.

This argument thus leads to the same conclusion as the kinematic theorem,
namely that the value of A corresponding to the assumed mechanism could not
be exceeded, and is therefore an upper bound on A.. It also shows that the sway
mechanism corresponds to the breakdown of the equilibrium equation (3.2), for
this equation cannot be satisfied if A exceeds 1.667 without one or more bend-
ing moments exceeding the plastic moment 25 in magnitude.

These arguments can be given generality. A kinematical analysis of an as-
sumed mechanism gives an upper bound on A, and there is always a correspond-
ing equilibrium equation whose breakdown, in the sense defined, gives the same
upper bound.

A full statical analysis of the sway mechanism must involve both equilibrium
equations (3.2) and (3.4). The four plastic moments occurring in the sway mech-
anism are given in Equations (3.8). When these values are substituted in
Equation (3.2), it is found that X = 1.667, as previously shown. Equation (3.4)
then gives

2M3 = 40\ +M2 +M4
= 40 x 1.667+25—25 = 66.7
M, = 33.3.

Since M3 cannot exceed the plastic moment 25 in magnitude, it follows that the
sway mechanism cannot be the actual collapse mechanism.
This statical analysis shows that the set of bending moments

Ml = —25
M, = +25
M; = +333
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M4 = —25
My = +25

is statically admissible with the applied loads when A\ =1.667. Since the
equations of equilibrium are linear in the bending moments and loads, it follows
that the set of bending moments obtained by multiplying the above set by any
positive factor k will be statically admissible with the loads corresponding to a
load factor k. If k is chosen as 0.75, the corresponding set of bending moments
becomes safe, since M; is reduced to +25. Thus, the set of bending moments

M, = —18.75
M, = +18.75
M, = +25

M, = —18.75
Ms = +18.75

is statically admissible with the loads defined by A = 0.75 x 1.667 = 1.25, and is
also safe. It follows from the static theorem that

Ao >1.25.

This procedure for deriving a lower bound is due to Greenberg and Prager
(1952). Combining this lower bound with the upper bound already obtained,

125 <2, <1.667.

3.3.3 Beam mechanism

The beam mechanism is shown in Fig. 3.1(c). Treating this mechanism as the
actual collapse mechanism, a kinematical analysis gives the corresponding value
of \. Since there is no horizontal movement of the columns to the first order of
small quantities, the horizontal load does no work. The vertical load 10X moves
through a distance 46 and so does work 40A8. There are three plastic hinges at
which the magnitudes of the rotations are 8, 26 and 8. The work equation is
therefore:

40N0 = 256 +25(20) + 256 = 1008
A = 2.5. (3.10)
By the kinematic theorem,
A <2.5.

This upper bound is higher than the value found from the sway mechanism. It
can therefore be concluded that the beam mechanism cannot be the actual col-
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lapse mechanism. Nevertheless, a statical analysis will now be given to provide a
further illustration of the use of the static theorem.
From Fig. 3.1(c) the bending moments at the three plastic hinges are

M, = =25, M; = +25, M, = —25. (3.11)

These are the three bending moments appearing in Equation (3.4), the equilib-
rium equation which was derived from the beam mechanism. Substituting in
Equation (3.3), from which Equation (3.4) was derived,

4000 = —25(—0) + 25(+20) — 25(—8)
256 + 25(20) + 256 = 1008.

It

This equation is again identical with the kinematical equation (3.10). It also fol-
lows that the beam mechanism corresponds to the breakdown of Equation (3.4).

To complete the statical analysis, the value of A just found is used in the
other equation of equilibrium, Equation (3.2), giving

Ms —Ml - 60)\'—M2 +M4
= 60x2.5+25—25 = 150. (3.12)

M; and M; are not determined uniquely. This is because the number of un-
knowns in the original problem is four, namely the three redundancies and the
value of A. However, the three plastic hinges in the beam mechanism provide
only three items of statical information. Since both M5 and M, cannot exceed
the plastic moment 25 in magnitude, Equation (3.12) cannot be satisfied by any
safe values. The best lower bound is arrived at by taking

M, = =75, M; = +75.

These two bending moments, together with the three plastic hinge values given
in Equations (3.11), constitute a bending moment distribution which is statically
admissible with A = 2.5. If each of these moments, and the value of A, is multi-
plied by 1/3, the distribution

M, = =25
M, = —833
M; = +833
My = —833
Ms = +25

is obtained, which is statically admissible with A\ =2.5/3 = 0.833. Since this
distribution is also safe, this value of X is a lower bound on 2. Combining this
with the upper bound previously obtained,

0.833 <A, <25.
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These bounds are not as close as those resulting from the analysis of the sway
mechanism,.

3.3.4 Combined mechanism

This mechanism is shown in Fig. 3.1(d). For the kinematical analysis it is seen
that both horizontal and vertical loads 15\ and 10\ move through the same
distance 46, so that the total work done is 100N\g. Equating this to the work
absorbed at the plastic hinges,

10008 = 250 + 25(26) + 25(20) +250 = 1500
A =15, (3.13)
This is an upper bound on A, by the kinematic theorem, so that

Ae<1.5.

This is the lowest of the upper bounds obtained from the three possible col-
lapse mechanisms. It can be concluded that this must be the actual value of A¢,
and that the combined mechanism is the actual collapse mechanism.

For the statical analysis, it is seen from Fig. 3.1(d) that the bending moments
at the four plastic hinges are

My, = —25, My = +25, M, = =25, Ms; = +25. (3.14)
Substituting these values of bending moments in the two equations of equilib-
rium (3.2) and (3.4), it is found that

A=15 M, = 15
M, is less than the plastic moment in magnitude, so that the bending moment
distribution found by this analysis is both safe and statically admissible with
A= 1.5. Since there are enough plastic hinges to constitute a mechanism, the

requirements of both the static and kinematic theorems have been met. By the
uniqueness theorem, it follows that

Ae = 1.5.

It is instructive to note that if the equilibrium equations (3.1) and (3.3) are
added, the following equation of equilibrium is obtained

10008 = M, (—0) + Ms(+20) + My (—26) + M (+0). (3.15)

This equation only involves the bending moments at the four plastic hinges
occurring in the combined mechanism, and its breakdown is expressed as follows

10006 = —25(—0) + 25(+20) —25(—20) + 25(+8) = 1508,
corresponding to the substitution of the plastic hinge moments involved in this
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mechanism, Equations (3.14). The addition of Equations (3.1) and (3.3) to form
Equation (3.15) is the statical counterpart of the kinematical addition of the
beam and sway mechanisms to form the combined mechanism. It is readily con-
firmed that Equation (3.15) can also be derived by applying the Principle of
Virtual Displacements to the combined mechanism treated as a virtual mech-
anism.

In designing a frame, the problem is to determine the values of the plastic
moments of the members so that a specified load factor against collapse is pro-
vided. For the frame of Fig. 3.1(a), it has now been established that if each
member has a plastic moment 25kNm, A, is 1.5. If, for example, a load factor
of 1.6 was specified, the analysis has shown that this would require the plastic
moment to be increased to

1.6
15 25 = 26.7kNm.

In the discussion of this example, two possible methods for the determination
of collapse loads have been revealed. The first method is to assume a mechanism
of collapse and to carry out a complete statical analysis for this mechanism, thus
obtaining the complete bending moment distribution. If this distribution is such
that the plastic moment is not exceeded anywhere in the frame, the correspond-
ing load factor must be the actual collapse load factor, by the uniqueness the-
orem. If not, other mechanisms of collapse are analysed similarly until the cor-
rect collapse mechanism is found. This method, which may be termed the trial-
and-error method, was first proposed by Baker (1949), and an example of its use
is given in Chapter 4. The second method is to examine all the possible collapse
mechanisms, writing down a work equation for each mechanism and thus
deriving the corresponding value of the load factor. The collapse load factor will
then be the smallest value thus obtained, by the kinematic theorem. For simple
frames it is comparatively easy to carry out the necessary computations, but in
fairly complicated frames there would clearly be a great number of possible
mechanisms and the procedure would become very tedious. A method for
circumventing the necessity for analysing all possible mechanisms is described in
Chapter 4.

Much experimental work has been carried out on rectangular portal frames
subjected to horizontal and vertical loading, and it has been found that the col-
lapse loads predicted by the plastic theory are usually in excellent agreement
with the observed loads at which large deflections are imminent. The most com-
prehensive series of tests were those reported by Baker and Heyman (1950) on
miniature frames, and confirmation of these results was provided by some full-
scale tests described by Baker and Roderick (1952). Further full-scale tests have
been reported by Schilling, Schutz and Beedle (1956).
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3.4 Distributed loads

When a member in a frame is subjected to a uniformly distributed load, the
bending moment distribution is -parabolic, and a maximum bending moment
may then occur at any position. If the actual collapse mechanism involves a
plastic hinge at the position of maximum bending moment, the location of this
hinge will need to be determined. The calculation of the collapse load is thus
more lengthy in such cases, although good approximations can be found by
employing the technique of upper and lower bounds.

3.4.1 Maximum bending moment in a member

As a preliminary step, the position and magnitude of the maximum bending mo-
ment in a member will be stated. Fig. 3.2 shows a member of length L carrying a
total load W which is uniformly distributed. It is supposed that the bending mo-
ments Mg, My, and My are known, C being the centre of the member and L and
R the left- and right-hand ends, respectively. The maximum bending moment
M ™ occurs at a position specified alternatively by x¢, yo or z¢.
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Fig. 3.2 Bending moment diagram for member carrying a uniformly distributed
load

The following results can be established by elementary statics:
Xo = (4M¢y —3My — Mg)/W.
Yo = (Mp —Myp)/W. (3.16)
zo = (4Mg — Mz, —3Mg)/W.
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M™® = M; + Wx3 /2L
= M¢+ Wyi /2L 3.17)
= Mg + Wz%/2L.

The position and magnitude of M™* will be found most accurately by cal-
culating the smallest of the three distances x,, yo or z,.

There may be no position of maximum bending moment within the span, so
that the bending moment increases or decreases continuously from one end of the
member to the other. This would be the case if, for example, it was found that
Zo was negative.

3.4.2 lllustrative example

Consider the rectangular frame whose dimensions and loading are shown in Fig.
3.3(a), the total load on the beam being 48\kN, uniformly distributed. The
members are all uniform, with plastic moment 40 kN m.

) (d)

Fig. 3.3 Frame with uniformly distributed vertical load

(a) Dimensions and loading. Units: m, kN
(b) Sway mechanism

(c) Beam mechanism

(d) Combined mechanism

The initial assumption, later to be corrected, is that if a plastic hinge occurs
anywhere in the beam it will be at the centre, section 3. With this assumption
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the three possible collapse mechanisms are shown in Fig. 3.3(b), (c) and (d);
these are similar to those shown in Fig. 3.1. The two equations of equilibrium
can be derived treating the mechanisms of Fig. 3.3(b) and (c) as virtual mechan-
isms. For the sway mechanism the horizontal load 18X moves through a distance
40 and so does work 728, and the vertical load does no work. The virtual work
equation is thus

TING = My (—0) + M; (+0) + My (—0) + M5 (+0)
TIN = —My + M, — M, + Ms. (3.18)

In the beam mechanism the horizontal load does no work. The centre of the
beam moves vertically through a distance 36. The average vertical movement of
the uniformly distributed load 48\ is thus 1.50, so that the work done by this
load is 72M\0. The virtual work equation is

TIN = My (—0) + Ms(+20) + My (—0)

For each of the three possible collapse mechanisms the bending moments at
the plastic hinges can be written down by inspection from Fig. 3.3(b), (c) and
(d). Substitution in the relevant equations of equilibrium then gives the corre-
sponding values of A. The values thus obtained are

Sway A= 2222
Beam A 2.222
Combined A = 1.667.

From the kinematic theorem, it follows that 1.667 is an upper bound on the
value of A, and that the combined mechanism is the actual collapse mechanism,
subject to the correct location of the plastic hinge which was assumed to occur
at mid-span. This mechanism is now investigated in more detail.

The bending moments at the assumed plastic hinges are:

M; = —40, M; = +40, M, = —40, M; = +40. (3.20)
Substituting in Equations (3.18) and (3.19), it is found that
A= 1667, M, =0.

Equations (3.16) and (3.17) may now be used to determine the greatest bend-
ing moment in the beam. Reference to Fig. 3.2 shows that for this case

ML = M2 =0
Me = M3 = +40 W = 48 x 1.667 = 80
MR = M4 = —40 L = 6.
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Using these values it is found that *

Yo = —0.5
25
MM = 40— | = 41.67.
0(24) 41.67

The complete statical solution for the mechanism of Fig. 3.3(d) thus gives rise
to a bending moment distribution which is statically admissible with A = 1.667
but is not safe. If the bending moments and A are each multiplied by the factor
24/25 =096, a safe and statically admissible bending moment distribution
results, as follows:

A 1.667 1.6
M, —40 —38.4
M, 0 0
M™ 44167 +40
M, —40 —384
M +40 +38.4

This establishes a lower bound of 1.6 upon the value of A,. Combining this with
the upper bound already found,

1.6 <)\, <1.667. (3.21)

This result defines the value of A, to within +2 per cent. If the exact value is
required, the precise location of the plastic hinge in the beam must be found.
This may be done by a kinematical analysis of the mechanism shown in Fig. 3.4,
in which the hinge in the beam is positioned at a distance y to the right of the
centre of the beam. Any value of y between the limits +3 defines a mechan-
ism, for which the corresponding value of A is an upper bound on A.. By the
kinematic theorem, the lowest of these upper bounds must be the actual collapse
load factor.
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Fig. 3.4 Combined mechanism. Units: m
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The motion of the mechanism is defined by the clockwise rotation 8 of each
column. This is also the rotation of the left-hand portion of the beam of length
(3 +), so that the vertical deflection at the plastic hinge within the beam is
(3 +)8. The right-hand portion of the beam of length (3 — y) rotates counter-
clockwise through an angle ¢, where

B—») = (G +y)o. (3.22)

The average vertical deflection of the uniformly distributed load 48\ on the
beam is 0.5(3 + )0, so that the work done by this load is 24A(3 + y)0. The
horizontal load 18\ moves through a distance 46 and so does work 726. Equating
the work done to the work absorbed,

2403 + )0 + 7200 = 2 x 406 + 2 x 40(8 + ¢).
Eliminating ¢ with the aid of Equation (3.22), it is found that

_10] 9y
M3 [(6+y)(3 —y)]' 323

The value of ¥ which minimizes A is —0.487 m, and the corresponding value
of A, which is the actual collapse load factor A, is 1.645.

The correct value of y differs only slightly from the value y, =—0.5m,
which defined the position of maximum bending moment in the beam when a
plastic hinge was assumed to occur at the mid-point. For all practical purposes it
would be sufficiently accurate to assume that the hinge in the beam is in fact
Iocated at this position, 0.5 m to the left of the mid-point, and to determine A,
by a kinematical analysis of the mechanism thus defined. This procedure gives a
value of A, of 1.645, which is the same as the exact value to four significant
figures.

3.5 Partial and overcomplete collapse

Consider a frame with # redundancies, for which the collapse mechanism has
only one degree of freedom with (r + 1) plastic hinges. At collapse the values of
(r + 1) bending moments at the plastic hinge positions are known, and there will
be one equation of equilibrium corresponding to the collapse mechanism from
which the collapse load factor may be determined. There are thus r equations of
equilibrium remaining from which the » redundancies can be found, so that the
entire frame is statically determinate at collapse. This situation is described as
complete collapse. The problems considered in Sections 3.3 and 3.4 were of this
type, the frames having three redundancies and four plastic hinges in the collapse
mechanisms.

When the collapse is not complete in this sense, it may be either partial or
overcomplete. Partial collapse is said to occur if the plastic hinges which are
formed in the collapse mechanism do not render the entire frame statically

BASIC THEOREMS AND SIMPLE EXAMPLES 63

determinate at collapse. The term overcomplgte collapse is used when there are
two or more mechanisms for which the corresponding value of the load factor is
the same, this value being the actual collapse load factor A;. Examples of both
these situations will now be given.

(a) (b)

Fig. 3.5 Example of partial collapse

(a) Dimensions and loading. Units: m, kN
(b) Collapse mechanism

3.5.1 Example of partial collapse

A simple case of partial collapse is shown in Fig. 3.5(a) and (b). The members
of this frame are of uniform cross section throughout, with plastic moment 70
kNm. The equations of equilibrium may be derived as before by the virtual dis-
placements method, and are

180N = —M, +2M; — M, (3.24)
40N = _Ml +M2 _M4 +M5. (3.25)

]

The beam mechanism of Fig. 3.5(b) is found to have the lowest correspond-
ing load factor and is therefore the actual collapse mechanism. The bending mo-
ments at the three plastic hinges are

M, = —70, M; = +70, M, = —70. (3.26)
Substituting these values in the two equations of equilibrium it is found that
Ae = 1.556
Ms —M, = 62.2. 327

The values of M; and M; are thus not uniquely determined for this mechanism.
This is because for this frame r = 3, and there are only three plastic hinges in the
collapse mechanism.

It is easy to select pairs of values of M, and Ms which satisfy Equation (3.27)
and in addition do not exceed the plastic moment 70 kN m in magnitude. Two
such pairs are My =0, M; =62.2; M; =—31.1, M5 = 31.1. Any such pair of
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moments, together with those specified in Equations (3.26), would be safe and
" statically admissible with A, = 1.556. From the uniqueness theorem this con-
firms that the collapse mechanism is the beam mechanism of Fig. 3.5(b), and
that the collapse load factor is 1.556.

In general, a part of the frame becomes statically determinate in a case of
partial collapse, owing to the formation of a mechanism. It is always possible to
calculate the load factor A corresponding to an assumed partial mechanism by
writing down the work equation for this mechanism, or equivalently by using
the corresponding equation of equilibrium. It is not then necessary to determine
the actual bending moment distribution in the rest of the structure at collapse.
So long as any bending moment distribution can be found which is both safe and
statically admissible with the set of loads A, it is known that collapse must occur
by this partial mechanism, and that A = A,.

In the present example it can be shown that if the idealized bending moment-
curvature relation of Fig. 2.1 is assumed, the values of M; and M; at collapse
under proportional loading would be 3.9 and 66.1, respectively, but a knowledge
of - these moments is not required to decide that the actual collapse mechanism is
the beam mechanism.

3.5.2 Example of overcomplete collapse

Consider the frame shown in Fig. 3.6(a), in which each column has a plastic mo-
ment 40 kN m, while the beam has a plastic moment 60 kN m, as indicated in the
figure. This is the first example that has been encountered of a frame whose
members do not all have the same plastic moment. The only additional consider-
ation which this introduces is that if a plastic hinge forms at either of the joints
2 or 4, it will occur in the corresponding column, with a plastic moment 40
kN m, rather than in the stronger beam.

A kinematical approach will be adopted. For the sway mechanism illustrated
in Fig. 3.6(b), the work equation is

200(50) = 400 + 400 + 400 + 400
10000 = 1608
A= 16. (3.28)

For the combined mechanism of Fig. 3.6(c), the work equation is
30A(2.5¢) + 200(5¢) = 40¢ + 60(2¢) + 40(2¢) + 40(¢)
1750¢ = 280¢
A = 1.6. (3.29)

The same value of A thus corresponds to both the sway and combined mechan-
isms, and it is readily verified that a higher value of A, namely 2.67, corresponds
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(c) (d)

Fig. 3.6 Example of overcomplete collapse
(a) Dimensions and loading. Units: m, kN

Plastic moments shown thus:

(b) Sway mechanism
(c) Combined mechanism
(d) Mechanism with two degrees of freedom

to the beam mechanism. From the kinematic theorem it follows that the value
of the collapse load factor A is 1.6, but it appears that the collapse mechanism
could be either the sway or the combined mechanism.

These results imply that the correct description of the collapse mechanism in
this case is as indicated in Fig. 3.6(d), in which the displacements and hinge
rotations of the two mechanisms of Fig. 3.6(b) and (c) have been added, forming
a mechanism with two degrees of freedom specified by the angles 8 and ¢. Here
the only restrictions on 6 and ¢ are that these angles should be positive, so that
the hinge rotations at sections 2 and 3 are in the correct sense. The relative
magnitudes of 6 and ¢ need not be specified. The corresponding work equation,
as derived directly from a consideration of the kinematics of this mechanism, is

30M(2.5¢) + 200(50 + 5¢) = 40(6 + ¢) + 40(0) + 60(2¢)
+40(0 + 2¢) + 40(0 + ¢)
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A(1000 + 175¢) = 1600 + 280¢
A= 16 (3.30)

This work equation could have been obtained by adding the two work equations
(3.28) and (3.29), since the displacements and hinge rotations of these mechan-
isms were added to form the mechanism of Fig. 3.6(d). The same corresponding
value of A is found regardless of the relative magnitudes of § and ¢.

The actual collapse mechanism thus involves five plastic hinges and has two
degrees of freedom. Since this frame has a number of redundancies r = 3, there
are (r +2) plastic hinges in the collapse mechanism. A result of this kind only
occurs at certain definite values of the ratios of the applied loads. Thus if the
horizontal load were kept constant at the value 200kN, it is easily seen that if
the vertical load was 29N kN collapse would occur by sway, whereas if this load
was 31\kN collapse would occur by the combined mechanism.

3.5.3 Continuous beams

A continuous beam resting on several supports will usually collapse in a mechan-
ism which is either partial or overcomplete. Consider as an illustration the con-
tinuous beam shown in Fig. 3.7(a), which rests on four simple supports and is of
uniform section throughout, with plastic moment 10kNm. For the loading
shown, it is evident that collapse can only occur by one of the two mechanisms
which are shown in Fig. 3.7(b) and (c).

The beam has two redundancies, and there must therefore be two equations
of equilibrium connecting the bending moments at the four numbered cross
sections. These equations may be derived by the virtual displacements method,
and are as follows:

20N = —M, +2M, — M;. (3.31)
20N = —M; +2M,. (3.32)

If the mechanism of Fig. 3.7(c) is assumed to be the actual collapse mechanism,
the bending moments at the plastic hinges are

M, = —10, M, = +10.
Substituting these values in Equations (3.31) and (3.32) it is found that
A =15
—M, +2M, = 20. (3:33)

It is easy to see that this equation can be satisfied by pairs of values of M; and
M, neither of which exceeds the plastic moment 10kNm in magnitude, for
example

M, = —6, M, = +7.
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It therefore follows from the uniqueness theorem that the mechanism of Fig.
3.7(c) is the actual collapse mechanism and that N is 1.5. This is a case of partial
collapse because there are only two plastic hinges involved in the collapse mech-
anism and the frame has two redundancies.
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Fig. 3.7 Continuous beam

(a) Dimensions and loading. Units: m, kN
(b) Collapse of central span
(c) Collapse of right-hand span

A case of overcomplete collapse would arise for this beam if the load on the
right-hand span were reduced to 7.5 kN, It can easily be verified by a kinematical
analysis that the value of A corresponding to the mechanism of Fig. 3.7(c) is in-
creased from 1.5 to 2, and this is also the value of A which corresponds to the
mechanism of Fig. 3.7(b). In this case a collapse mechanism with two degrees of
freedom could be formed by adding the hinge rotations and displacements of
both these mechanisms.

There is ample experimental evidence that the collapse loads for continuous
beams can be predicted closely by the plastic theory. Maier-Leibnitz (1936) has
given a critical review of the many tests carried out up to 1936 by himself, and
by other investigators. In some of the early tests by Maier-Leibnitz (1928) in-
termediate supports were lowered before the test commenced, and tests of this
kind were also carried out by Horne (1952a); the results showed that the col-
lapse load was not thereby affected. Horne (1952a) also showed that the col-
lapse load was not affected by non-proportional loading.
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Fig. 3.8 Fixed-ended beam with flange plates. Units: m, kN

3.5.4 Fixed-ended beam strengthened by flange plates

A final example of overcomplete collapse is provided by the case of a fixed-
ended beam which is strengthened by flange plates welded on at its ends, as illus-
trated in Fig. 3.8. Problems of this general type have been considered in detail
by Horne (1952b) and also by Popov and Willis (1957). It will here be supposed
that these plates each extend over a length 0.5m, as shown, the span of the
beam being 5 m. The beam, whose unstrengthened cross section has a plastic mo-
ment 32KkNm, is subjected to a uniformly distributed load 100AkN. The opti-
mum effect is achieved if at collapse the plastic moment of the strengthened
section is developed at the built-in ends, and in addition the plastic moment of
the unstrengthened section is developed at the centre of the beam and also at the
sections where, the strengthening begins. The corresponding bending moment
diagram is shown in Fig. 3.8. A simple calculation then shows that the value of
the plastic moment at the ends of the beamis 32 x 2.125 = 68 kN'm, and from
the figure it is then seen that the collapse load factor A, is given by

(1000,)§ = 32+68
Ae = 16.

In this situation there are two possible collapse mechanisms. One of these is with
two end hinges and a central hinge, and the second has two hinges at the termin-
ation of the strengthening together with a central hinge. A collapse mechanism
with two degrees of freedom could therefore be formed without difficulty.
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Examples

1. A uniform continuous beam whose plastic moment is 28 kN m rests on five
simple supports A, B, C, D and E:

AB =3m, BC=CD =4m, DE = 5m.

Each span carries a concentrated load at its mid-point, these loads being:
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AB = 25AkN, BC = 25AkN, CD = 35AkN, DE = 12.5AkN.

Find the collapse load factor, and determine the limits between which the
reaction at A must lie at collapse.

2. A uniform continuous beam whose plastic moment is M,, rests on three simple
supports at A, B and C, where AB = BC =/ The span AB is unloaded, and BC
carries a load W uniformly distributed over the span . Show that at collapse the
plastic hinge which forms in BC is located at a distance (/2 — 1) from C, and
find the value of W which would cause collapse. By means of an elastic analysis
show that if W is steadily increased from zero yield first occurs at a distance
71/16 from C.

3. A continuous beam rests on four simple supports A, B, C and D:
AB = BC = CD = 3m.
Each span carries a uniformly distributed load, as follows:
AB = 50kN, BC = 100kN, CD = 60kN.

The beam is to be designed so that it is of uniform section in each span, but the
plastic moments of the spans may all be different. Find the required value of the
plastic moment for each span so that collapse would just occur with a load fac-
tor of unity. It may be assumed that the plastic moment of BC is greater than
for AB or CD. Use the answer to example 2 for AB and CD, and use Equations
(3.16) and (3.17) when considering BC.

4. A uniform fixed-ended beam of length / and plastic moment M, is subjected
to a uniformly distributed load W together with a concentrated load P at a dis-
tance I/3 from one end of the beam. Find the value of W which would cause col-
lapse for the following three values of P: 0.25W, 0.5W and W.

5. For the fixed-ended beam of Fig. 3.8 the collapse load factor A, was 1.6 if the
flange plates increased the plastic moment from 32kNm to 68 kN m over a dis-
tance of 0.5m at each end of the beam. If the ends of the beam were not
strengthened in this way, find the central length which would require strengthen-
ing to the same increased value of the plastic moment to achieve the same value
of A.

6. Write down two equations of equilibrium for the frame of Fig. 3.6(a). As-
suming collapse by the combined mechanism, verify that the corresponding
value of A is 1.6 and that the bending moment at section 2 is +40kNm.

7. A fixed-base rectangular portal frame is of height / and span 2/, and is of
uniform section throughout, with plastic moment M;,. The frame carries a hori-
zontal load H applied at the top of one of the columns, and also a vertical load V'
at the centre of the beam. Find the value of W which would cause collapse for
the following pairs of values of H and V, and in each case determine the bending
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moment distribution at collapse.

@H=W, V=0
(b)H=W, V=05W.
(QVH=W, V=W
(HH=W, V=2W.
(H=W, V=3W

Confirm that in cases (b) and (d) the collapse is overcomplete. For case (d)
sketch the overcomplete collapse mechanism with two degrees of freedom, and
show that the value of W, can be found from the work equation corresponding
to this mechanism.

8. In a pinned-base rectangular portal frame ABCD the columns AB and CD are
each of height 3m and the beam BC is length 9m. The members are of
uniform section throughout, with plastic moment 30 kN m. The frame carries a
horizontal load 10A kN applied at C, and also a vertical load 10\ kN at a distance
3m from B. Find the collapse load factor when the horizontal load acts in the
direction BC, and also when it acts in the direction CB.

9. Perform a statical analysis for the frame of Fig. 3.3(a), assuming the sway
mechanism of collapse. Using Equations (3.16) and (3.17), find the position and
magnitude of the greatest bending moment occurring in the beam, and hence
determine a lower bound on the value of A.

10. For the frame of Fig. 3.3(a), find the value of A\ corresponding to the com-
bined mechanism, with the hinge in the beam located at the position of maxi-
mum bending moment found in example 9. Using Equations (3.16) and (3.17),
find the magnitude of the greatest bending moment in the beam in the corre-
sponding bending moment distribution, and hence determine a lower bound on
the value of A..

11. A fixed-base rectangular portal frame is of height and span 5 m. The columns
each have a plastic moment 24kNm and the beam has a plastic moment
12 kN m.

One of the columns is subjected to a uniformly distributed horizontal load
150 kN. Show that the collapse mechanism is the sway mechanism, with plastic
hinges at the two bases and the two beam/column joints, and determine the
value of the collapse load factor. Investigate the bending moment distribution in
the loaded column using Equations (3.16) and (3.17). What would be the value
of the collapse load factor if the plastic moments of the columns were reduced
to 12kNm?

12. In a fixed-base rectangular portal frame ABCD the columns AB and CD are
of height 4m and 6 m, respectively. The base D is lower than the base A by a
height 2 m, so that the beam BC, of length 4 m, is horizontal. All the members of
the frame have the same plastic moment 20 kN m.
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The beam BC carries a central concentrated vertical load 20N\ kN, and a con-
centrated horizontal load 8AkN is applied at C in the direction BC. Find the
value of A at which collapse would occur. Show also that if the horizontal load is
reversed in direction, the collapse load factor is changed, and find its new value.

13. A uniform beam of length / and plastic moment M}, is simply supported at
one end and rigidly built-in at the other end. A concentrated load W may be
applied anywhere within the span. Find the smallest value of M, such that col-
lapse would just occur when the load was in its most unfavourable position.

4 Methods of Plastic Design

4.1 Introduction

In this chapter two methods for designing a frame so that plastic collapse would
just occur at a given load factor are described. It is assumed that failure by
buckling does not occur before the plastic collapse load is attained; the problems
associated with the buckling of members which have entered the plastic range
are beyond the scope of this book.

The first method to be described is the trial-and-error method. This method is
suitable only when, on the basis of previous experience, the collapse mechanism
is believed to be known. It consists essentially of verifying that, for the assumed
mechanism of collapse, a safe and statically admissible bending moment distri-
bution can be found.

When the collapse mechanism is not known, the method of combining mech-
anisms may be used. The procedure consists of investigating a number of poss-
ible collapse mechanisms which are formed by combining certain independent
mechanisms. When it is thought that the correct collapse mechanism has been
found, the result is checked by the same procedure as in the trial-and-error
method. Other methods, based on the use of linear programming techniques,
have been developed. These are beyond the scope of this book, but are discussed
briefly in a concluding section.

4.2 Trial-and-error method

The trial-and-error method will be illustrated by its application to the pitched-
roof portal frame shown in Fig. 4.1(a). The loads shown are due to dead and
superimposed vertical loading, together with the effect of wind. All the loads are
uniformly distributed along the members; for convenience they are indicated by
broken arrows which show the resultants acting at the centres of the members.

All the joints, including those at the bases, are assumed to be capable of
developing the plastic moment. The members all have the same plastic moment
My, and it is required to find the value of My such that collapse would just occur
at a load factor X of 1.6.

Since the method consists essentially of a statical check of an assumed mech-
anism, the first step is to develop the equations of equilibrium, using the method
of virtual displacements. Attention will initially be confined to the bending mo-
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ments at the ends and centres of the four members, these positions being num-
bered from 1-9 in Fig. 4.1(a). Since the frame has three redundancies, there
must be six independent equations of equilibrium relating the nine unknown
bending moments. ‘

() (d)

Fig. 4.1 Pitched-roof portal frame

(a) Dimensions and loading: all loads uniformly distributed. Units: m, kN
(b) Beam-type mechanism
(c) and (d) Sway mechanisms

Four of these equations can be derived from beam-type mechanisms, one for
each member. A typical mechanism of this kind, for the left-hand rafter, is
shown in Fig. 4.1(b). Its motion is defined by a clockwise rotation 8 of 34 about
the joint 3. Since the mid-point is at a horizontal distance 3.5m from 3, its
vertical movement is 3.50 m -downwards. Its height above the left-hand end is
1.0m, and the horizontal movement is therefore 1.0 m to the right, as shown.

The two other mechanisms which will be used are shown in Fig. 4.1(c) and
(d). The sway mechanism of Fig. 4.1(c) is of a kind encountered previously, and
calls for no comment, but the other sway mechanism of Fig. 4.1(d) is more com-
plex. In this mechanism the left-hand rafter 35 rotates about the joint 3, so that
the apex 5 moves in a direction perpendicular to 35. The column 79 rotates
about its base 9, and the joint 7 therefore moves horizontally. This defines the
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directions in which the ends 5 and 7 of the right-hand rafter 57 move; conse-
quently this member rotates about the instantaneous centre I shown in Fig.
4.1(d). The motion of the mechanism is specified by a counterclockwise rotation
0 of the rafter 57 about I.

The horizontal movement of joint 7 is seen from the figure to be 46 m. If the
clockwise rotation of the column 79 is specified as ¥, it is seen that 40 = 5y, so
that ¢ = 0.80. The clockwise rotation ¢ of the rafter 35 can by a similar argu-
ment be shown to be 8.

Since the rotation of the rafter 57 is 6 counterclockwise and that of the column
79 is 0.80 clockwise, it follows that the rotation at the hinge at joint 7 is 1.80 in
magnitude; by inspection its sign is negative. The rotation at the hinge at the
apex 5 can similarly be shown to be +28. This completes the kinematical
analysis of this mechanism.

The six equations of equilibrium derived from the six mechanisms are as
follows:

325N = —M; +2M, — M. (4.1)
30N = —M; +2M, — Ms. (4.2)
45\ = —Ms + 2Ms — M. (4.3)

1250 = —M, + 2My — M. (4.4)

52.5\ = —M, +Ms — M, +M,. (4.5)

152\ = —M; +2Ms — 1.8M; + 0.8M, . (4.6)

The calculations will be carried out by assuming an arbitrary value for M,
40kNm, and treating A as the parameter to be determined in the first instance,
as in the previous chapter. The correct value of M, to ensure a collapse load fac-
tor of 1.6 is found as a final step by simple proportions.

It is known that for this type of frame and loading the collapse mechanism is
the mechanism of Fig. 4.1(d), subject only to minor adjustments in hinge pos-
itions arising from the fact that the loads on the members are uniformly dis-
tributed. It is therefore assumed that

My = —40, Ms; = +40, M, = —40, M, = +40 4.7)

the units (kN m) being omitted for convenience.
Substitution in Equation (4.6) gives the value of A, and the other five
equations are easily solved in turn to give:

A = 1474
M, =374, M, = —14.7, M, = +22.1,
Mg = +332, M = +09. (4.8)
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None of these bending moments exceeds the plastic moment 40 in magni-
tude. The mechanism of Fig. 4.1(d) is therefore the actual collapse mechanism,
subject only to the reservation that since each member carries uniformly dis-
tributed loads it is possible that a bending moment greater in magnitude than the
plastic moment might occur at a section other than those so far examined.

For this situation, the complete bending moment diagram for the frame is
shown in Fig. 4.2, in which the frame has been opened out to form a horizontal
datum. It will be seen that the form of the bending moment distribution in both
the columns is such that the plastic moment is not exceeded. However, for each
of the rafters this possibility exists. Using the method explained in Chapter 3,
Equations (3.16) and (3.17), it can be shown that there are maximum bending
moments in the two rafters, the largest of these bending moments being +45.2
in the right-hand rafter, occurring 1.44 m from the apex.

-a7.4 -40 -40

1-44

ol 3 ‘S-ir 7 9
|
|

+40 +40
Mv +45-2

Fig. 4.2 Bending moment diagram for pitched-roof portal frame

A fresh analysis is now made assuming that a plastic hinge occurs at this pos-
ition of maximum bending moment, rather than at the apex; the other three
plastic hinges are left at sections 3, 7 and 9. The bending moment at this pos-
ition is defined as Myq, and a further equation of equilibrium is required which
involves this moment. This can be derived from the beam-type mechanism
shown in Fig. 4.3, for which

561y = 1.390
Y = 0.250.
The corresponding equation is:
17850 = —Ms + 1.25M;y —0.25M,. (4.9)

The plastic moments in the new mechanism are:

M; = —40, My, = +40, M, = —40, M, = +40.  (4.10)
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|
1-39 | 5.61 'l

Fig. 4.3 Beam-type mechanism for rafter

Substituting in Equations (4.1)—(4.6) and (4.9) gives

A = 1.404
M, = =337, M, = —14.1, M, = +184, M, = +347,
M; = +290, Mz = +009. (4.11)

The bending moment distribution is similar to that of Fig. 4.2, and need not
be plotted. The maximum bending moment in the left-hand rafter is now re-
duced to +35.0. In the right-hand rafter the maximum moment now occurs at a
position 1.49 m from the apex, or 0.05 m from section 10, and is +40.00 to four
significant figures.

Thus, with the plastic moments specified in equations (4.10) and (4.11), the
resulting bending moment distribution is both safe and statically admissible with
a load factor of 1.404. By the uniqueness theorem this is therefore the collapse
load factor for the frame when My = 40kNm. If all the loads and bending mo-
ments were increased in the ratio 1.6/1.404, the bending moment distribution
would remain safe, provided that the plastic moment was increased to

1.6
M, = (1.404>40 = 45.6kNm,
and would also be statically admissible with the load factor 1.6. The required
value of My, is therefore 45.6 kN m.

The trial-and-error method is especially suvited to single-bay portal frames, for
which the collapse mechanism is generally known from previous experience. It is
often carried out by a semi-graphical method, in which the bending moment
diagram is represented as the difference between the free and reactant diagrams.

A comprehensive account of the method for portal frames has been given by
Heyman (1957). The design of single-bay portal frames has also been discussed
by several authors, including Harrison (1960). The analysis of a three-bay portal
frame by this method was described by Baker (1949), and it was used by Hendry
(1955) to analyse Vierendeel girders. Various tests on portal frames have been
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reported, for instance the full-scale tests of Baker and Eickhoff (1955, 1956)
and Driscoll and Beedle (1957).

Difficulties arise in the trial-and-error method when the actual collapse mech-
anism could be of the partial type, so that with r redundancies there may be
fewer than (r + 1) plastic hinges at collapse. When investigating an assumed par-
tial collapse mechanism there is no difficulty in determining the statically
admissible bending moment distribution in that part of the frame which is stati-
cally determinate at collapse, and establishing whether this distribution is also
safe. However, it is also necessary to examine the remainder of the frame, in
which the bending moment distribution is not uniquely determined, to see
whether among all the possible statically admissible bending moment distri-
butions at least one safe distribution exists. Such an investigation may present
considerable difficulty, particularly if this remaining portion of the frame is
highly redundant.

Experience in the design of similar structures may afford the necessary
guidance as to the likelihood of an assumed collapse mechanism being the cor-
rect one. However, in facing unusual problems there is a need for a method by
which a close approximation to the actual collapse mechanism can be found
quickly, even though this mechanism may be of the partial type. The method of
combining mechanisms, which will now be described, enables this to be done.

4.3 Method of combining mechanisms

The essential notion underlying this method, which was developed by Neal and
Symonds (1952a, 1952b), is that for a given frame and loading every possible
collapse mechanism can be regarded as a combination of a certain number of

independent mechanisms. For each possible collapse mechanism a work equation

can be written down from which the corresponding value of the load factor A is
found. The actual collapse mechanism is distinguished from among all the poss-
ible mechanisms by the fact that it has the lowest corresponding value of A, by
the kinematic theorem. The independent mechanisms with low corresponding
values of A are therefore examined to see whether they can be combined to form
a mechanism which gives an even lower value of A. It is only necessary to ex-
amine a few of the more likely combinations in order to arrive at a mechanism
which is almost certainly the actual collapse mechanism. A statical check is then
performed to verify the result. The basic procedure is first explained with refer-
ence to a simple rectangular frame problem, and this is followed by some more
complex examples.

4.3.1 Rectangular frame

In the rectangular frame whose dimensions and loading are shown in Fig. 4.4(a),
the plastic moment of each column is to be 50 per cent greater than that
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of the beam. It is required to find the values of these plastic moments which
would provide a load factor of 1.5 against plastic collapse. The initially assumed
values of 45kNm and 30 kN m, shown in the figure, will be adjusted at the end
of the analysis.

304
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Fig. 4.4 Rectangular frame

(a) Dimensions and loading. Units: m, kN. Plastic moments shown thus:
(b) Beam mechanism

(¢) Sway mechanism

(d) Combined mechanism

The number # of possible plastic hinge positions is 5; these positions are num-
bered in the figure. The number of redundancies # is 3, and so there are (n —r) =
2 independent equations of equilibrium connecting the bending moments at the
five numbered cross sections. These equations, which are required for the statical
check, are derived by the method of virtual displacements from the two mechan-
isms shown in Fig. 4.4(b) and (c), and are:

90N = M, (—0) + M3 (+26) + M4 (—0)
90N = —M, +2M; —M,. (4.12)

I

It
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12000 = M, (—0) + M, (+0) + My(—8) + Ms (+0)
120)\ = —Ml +M2 _M4 +M5 (4.13)

i

The beam mechanism of Fig. 4.4(b) is now considered as a possible collapse
mechanism. The hinges are treated as plastic hinges, at which the work absorbed
is always positive, regardless of the sense of the rotation. At sections 2 and 4 the
hinges are located in the beam, which has a smaller plastic moment than the
columns. The work equation is

90N = 30(8) + 30(29) + 30(8) = 1200
A = 1.333. (4.14)
Similarly, for the sway mechanism of Fig. 4.4(c), the work equation is
12006 = 45(0) + 30(9) + 30(6) + 45(8) = 1500
A = 125. (4.15)

Now consider the mechanism of Fig. 4.4(d). This combined mechanism is
obtained by adding the displacements and hinge rotations of the beam and sway
mechanisms. The work equation for this mechanism will not be derived directly,
but will be deduced from the work equations (4.14) and (4.15) for the two
mechanisms which have been combined.

Examination of Fig. 4.4(b), (c) and (d) reveals that the displacements in the
combined mechanism are obtained by adding the displacements in the beam and
sway mechanisms. The work done by the loads in the combined mechanism is
therefore the sum of the work done in the beam and sway mechanisms.

The hinge rotations in the combined mechanism are also obtained by adding
the hinge rotations in the two mechanisms combined. However, the work
absorbed at the hinges is not-additive in each case, as can be seen from Table 4.1.

I

Table 4.1 Hinge rotations and work absorbed at plastic hinges

Beam mechanism Sway mechanism Combined mechanism
Section
Hinge Work Hinge Work Hinge Work
rotation  absorbed rotation  absorbed rotation absorbed
1 — — —0 450 -0 4560
2 —0 300 +0 306 - -
3 +26 606 - - +20 600
4 —0 3086 -8 300 —286 600
5 — - +8 456 +6 456

At section 2, the work absorbed is 300 for both the beam and sway mechan-
isms. However, the hinge rotations —6 and +6 combine to give zero rotation
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and therefore zero work absorbed in the combined mechanism. At the other
four cross sections, the work absorbed is additive. The work equation for the
combined mechanism is therefore derived as follows:

Beam: 90N\ = 1200; A = 1.333. (4.14)
Sway: 1200 = 1506; A = 1.25. (4.15)
Combined: 210M0 = 2706 — 2 x 300
= 2100
A= 1. (4.16)

Because of the cancellation of the hinge at section 2, and the consequential
reduction in the work absorbed, the value of A for the combined mechanism is
less than for each of the mechanisms combined. Since in this simple example
there is only one possible combination of mechanisms, it is concluded that the
combined mechanism is the actual collapse mechanism.

The solution is readily checked by statics. The plastic moments in the col-
lapse mechanism are:

My, = —45, M; = +30, M, = —30, Mg = +45.

Substituting in Equations (4.12) and (4.13), it is found that M, =0and A =1,
and this confirms the analysis.

Since a load factor of 1.5 is required, the plastic moments initially assumed
must be increased by the factor 1.5, so becoming 30 x 1.5 =45kNm for the
beam and 45 x 1.5 = 67.5kNm for the columns.

The correspondence between a plastic collapse mechanism and the breaking
down of an equation of equilibrium was emphasized in Chapter 3. The combin-
ing mechanisms method of analysis is perhaps best understood on this basis. The
two independent equations of equilibrium corresponding to the beam and sway
mechansims are

90N0 = M, (—0)+ M;5(+20) + M, (—9). (4.12)
12000 = M;(—0)+ M, (+0) + M4 (—0) + Ms(+06). (4.13)

Adding these two equations, it is found that
21000 = M (—0) + M3(+20) + M, (—26) + Ms(+6). “4.17)

This is precisely the equation which results from applying the method of virtual
displacements to the combined mechanism of Fig. 4.4(d). It is not, of course,
independent of Equations (4.12) and (4.13).

Since no bending moment can exceed the plastic moment in magnitude, it
follows that M; and M5 must lie between the limits 45, while M, , M5 and M,
must lie between the limits £30. The breakdown of the above three equations is
therefore expressed as follows:
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90N = (—30)(—0) + 30(+20) — 30(—0) = 1200
1200 = (—45)(—0) + 30(+8) — 30(—6) + 45(+8) = 1506
21000 = —45(—0) + 30(+20) — 30(—26) + 45(+6) = 2108,

Il

and these three equations are the work equations (4.14), (4.15) and (4.16), for
the beam, sway and combined mechanisms, respectively. The combination of the
beam and sway mechanisms has its exact counterpart in the combining of the
two equations of equilibrium, (4.12) and (4.13), to form Equation (4.17). In
particular, the hinge cancellation at section 2 corresponds to the elimination of
M, between Equations (4.12) and (4.13) which results from their addition.

This example serves to illustrate the fact that in general there will be a num-
ber of independent mechanisms which is equal to the number of independent
equations of equilibrium. If there are n possible plastic hinge positions and r
redundancies, ‘there will be (# —r) independent equations of equilibrium and
therefore (n —r) independent mechanisms. The essence of the combining mech-
anisms technique is to identify these independent mechanisms and to explore
those combinations in which hinge cancellations are likely to produce load fac-
tors which are lower than the lowest load factor arising from any of the indepen-
dent mechanisms.

It will be appreciated that in the example of Fig. 4.4 any pair of the three
mechanisms shown in this figure could have been selected as the two independent
mechanisms. The reason for choosing the beam and sway mechanisms as the two
independent mechanisms is that if the combined mechanism were selected as one
of the independent mechanisms, the combination of the independent mechan-
isms would involve the subtraction of hinge rotations and displacements. For ex-
ample, choosing the combined mechanism and the beam mechanism as the two
independent mechanisms, the sway mechanism is derived by subtracting the dis-
placements and hinge rotations of the beam mechanism from those of the com-
bined mechanism. This would lead to some awkwardness in the corresponding
calculations.

4.3.2 Two-bay rectangular frame

The technique of combining mechanisms will now be applied to the frame whose
dimensions and loading are shown in Fig. 4.5(a). All the members of this frame
are to have the same plastic moment, and there is to be a load factor of 14
against plastic collapse. The plastic moment is initially assumed to be 30 kN m.
The ten possible plastic hinge positions are numbered in the figure, and the
frame has six redundancies. The number of independent mechanisms is therefore

n—r =10 —6 = 4.

Three of these mechanisms are readily identified as the sway mechanism of
Fig. 4.5(b) and the two beam mechanisms of Fig. 4.5(c) and (d). The fourth in-
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Fig. 4.5 Two-bay rectangular frame

(a) Dimensions and loading. Units: m, kN
(b) Sway mechanism

(c¢) and (d) Beam mechanisms

(e) Joint rotation mechanism

dependent mechanism is the joint rotation of Fig. 4.5(e). This mechanism is not,
of course, a possible plastic collapse mechanism, as there is no applied couple at
the central joint. However, it is clearly independent of the other three mechanisms,
and can be combined with them to form possible mechanisms of collapse, as will
be seen.
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Equations of equilibrium can be derived from the four independent mechan-
isms by the method of virtual displacements. These equations are:

100N8 = M, (—0) + My (+0) + M5 (+0) + Mio(—0) + Mg (—0) + My (+6)
6OND = M, (—0) + My (+20) + My (—6)
TON0 = Mg(—0) + M, (+20) + Mg (—6)
0 = My(—0) + Ms(—0) + M (+6).

These equations reduce to

100N = —M; + M, —Myo +Ms + My —Ms. (4.18)
60N = —M, +2M; — M, (4.19)
TN = —M, + 2M; — Ms. (4.20)

0 = —M, —M;s + M. (4.21)

If the sway and beam mechanisms are now viewed as possible plastic collapse
mechanisms, their work equations can be derived immediately from the above
equations. In each case, the work done is the same. At each plastic hinge the
plastic moment is 30 and the work absorbed is always positive. The work
equations are thus

Sway Fig. 4.5(b) 100\ = 1808; A =18
Beam Fig. 4.5(c) 60N0 = 1200; A = 2
Beam Fig. 4.5(d) 72\0 = 1208; X = 1.667.

I

The three load factors obtained are not widely different. It is natural to begin
by investigating the combination of the two mechanisms with the lowest load
factors, these being the right-hand beam and sway mechanisms. Adding their dis-
placements and hinge rotations gives rise to no hinge cancellation, as in Fig.
4.6(a). However, if the joint rotation mechanism of Fig. 4.5(e) is now added, the
plastic hinge rotations +0 and —8 at sections 5 and 6 are cancelled, while a
hinge rotation —8 appears at section 4. The effect is thus to reduce the work

absorbed at the central joint from 606 to 308. The resulting mechanism is shown _

in Fig. 4.6(b).
The work equation for this combination is derived as follows:

Sway Fig. 4.5(b) 100A8 1808; A=138

1l

Right-hand beam Fig. 4.5(d) 72A0 = 1206; A = 1.667
Combination Fig. 4.6(b) 172A0 = 3008 —306 = 2708
A = 1.570.
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(e)

Fig. 4.6 Two-bay rectangular frame. combinations of mechanisms

This value of A is lower than the value for either of the two mechanisms com-
bined, because of the hinge cancellation. The calculation illustrates the role
played by the joint mechanism. For any combination, the joint is rotated into
the position which minimizes the work absorbed in the plastic hinges at the
central joint. In this way, the joint mechanism features as an independent mech-
anism, although in itself it is not a possible collapse mechanism.

Another possible combination is obtained by adding the left-hand beam and
sway mechanisms, as illustrated in Fig. 4.6(c). This results in the cancellation of
the hinge at section 2. In this case there is no advantage to be gained by rotating
the central joint. For each of the mechanisms combined the total work absorbed
in the plastic hinges included a term 308 for the hinge at section 2, so that a
reduction of 600 in the total work absorbed is achieved by this combination.
The work equation is therefore derived as follows:
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Sway Fig. 4.5(b) 100N\

I

1800; A= 138

Left-hand beam Fig. 4.5(c)  60A8 = 1200; A=2
Combination Fig. 4.6(c) 160Ad = 3000 — 606 = 2400
A =15,

This is the lowest value of N obtained so far. The only other possible combi-
nation is obtained by adding the right-hand beam mechanism to the mechanism
just derived, Fig. 4.6(c). A direct addition gives the mechanism shown in Fig.
4.6(d). However, the effect of adding the joint rotation mechanism is shown in
Fig. 4.6(¢e), and it will be seen that the work absorbed at the central joint is
thereby reduced from 908 to 608. The work equation for this mechanism is
therefore obtained as follows:

Combination Fig. 4.6(c) 160A8

il

12400, A=15

Right-hand beam Fig. 4.5(d) 72A8 = 1208; A = 1.667
Combination Fig. 4.6(e) 232A8 = 3600 — 300 = 3300
A = 1422,

This is the lowest load factor for all the mechanisms considered. The mechan-
ism of Fig. 4.6(e) is therefore presumed to be the actual collapse mechanism.
This conclusion will now be confirmed by a statical analysis.

The bending moments at the plastic hinges in the mechanism of Fig. 4.6(¢e)
are as follows:

M, = —-30, My = +30, M, = —30, M, = +30,
Mg = _30, M9 = +30, MIO = —30.

These values are substituted in the equations of equilibrium, (4.18)—(4.21),
leaving four unknowns, namely M, , M5, My and the value of A, The solution is

M, = +4.66, Ms = +1759, Mg = —1241
A = 1422.

This value of A agrees with the value found by the combining mechanisms
analysis. Moreover, the values found for the three remaining bending moments
are all less than the plastic moment 30 in magnitude. The bending moment dis-
tribution corresponding to the mechanism of Fig. 4.6(e) is thus both safe and
statically admissible with \ = 1.422, confirming that this is the actual collapse
mechanism.

Finally, it is noted that since the load factor is 1.422 if the plastic moment is
30 kN m, the required plastic moment for a load factor of 1.4 is

14
=% 130 = 295k
(1.422) 9-5 kNm
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4.3.3 Partial collapse

In the problem just considered, the statical check was easy to perform because
the collapse mechanism was complete; the number of redundancies » for the
frame was six and there were seven hinges in the collapse mechanism. When the
collapse mechanism is partial, with fewer than (r + 1) hinges, the statical check
is intrinsically more difficult, but the results of a combining mechanisms analysis
are extremely useful as a guide.

To illustrate the procedure, consider the problem of Fig. 4.5(a), modified by
changing the vertical load 36\ on the right-hand beam to 48\. The other two
loads and the frame dimensions remain the same, and all the members still have
the same plastic moment, taken initially to be 30 kN m.

The combining mechanisms analysis need not be repeated here; the results
are:

Sway Fig. 4.5(b) 100A8 = 1806; A=18
Left-hand beam Fig. 4.5(c) 60A8 = 1206; =2
Right-hand beam Fig. 4.5(d) 96A0 = 1200; A =125
Combination Fig. 4.6(b) 196\ = 2700; A = 1.378
Combination Fig. 4.6(c) 160A8 = 2400; A=15
Combination Fig. 4.6(¢) 256\ = 3300; A = 1.289

The lowest load factor is now for the right-hand beam mechanism of Fig.
4.5(d), which only involves three hinges, and so it is concluded that this is the
actual collapse mechanism. To verify this result, the four independent equations
of equilibrium are derived as before; they are

1000 = —M, +M, — My + M + M, — M. (4.22)
60N = —M, + 2M3 — M. (4.23)
96N = —Ms +2M, — M. (4.24)

0 = —M, —M;s + M. (4.25)

The bending moments at the plastic hinges in the collapse mechanism are
Mg = —30, M, = +30, Mg = —30. (4.26)

When these values are substituted in Equation (4.24), which was derived from
the right-hand beam mechanism, it is found at once that A = 1.25. However, the
other three equations cannot be solved to determine the values of any of the
remaining seven unknown bending moments.

In order to show that the correct collapse mechanism has been identified, a
set of bending moments which is both safe and statically admissible with
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A =1.25 must be established. This set must include the three values given in
Equations (4.26). Guidance is provided by noting that the mechanism with the
next lowest value of A is the combination of Fig. 4.6(e), for which the corre-
sponding value of X is 1.289. This mechanism was obtained by adding the dis-
placements and hinge rotations of the four independent mechanisms. The statical
equivalent is to add the four equations of equilibrium, (4.22)—(4.25), giving

256\ = ——Ml + 2M3 _2M4 + 2M7 —2M8 +M9 fMIO' (427)

Disregarding any other requirements of equilibrium, it is seen that since no
bending moment can exceed the plastic moment in magnitude, this equation
breaks down when the seven bending moments involved have the values

M, = =30, M; = +30, M, = —30, M, = +30,
Mg = —30, My, = +30, My, = —30. (4.28)
With these valués, Equation (4.27) becomes
256\ = 330; A = 1.289.

Equation (4.27) is therefore close to breaking down when A = 1.25, It fol-
lows that the set of bending moments which is sought cannot involve values dif-
fering much from those in Equations (4.28). Since complete collapse requires
seven plastic hinges, and there are only three in the actual collapse mechanism,
four values must be selected to enable the equations of equilibrium to be solved.

Two of the values appearing in Equations (4.28), namely M, = +30 and
Mg =—30, occur in the actual collapse mechanism. An arbitrary choice of four
of the remaining five is

M, = —30, M, = +30, M, = —30, M, = +30.  (4.29)

Substituting these values in the equations of equilibrium, with A =1.25, it is
found that

M, = +15, Ms = 0, M = —20. (4.30)

The set of bending moments contained in Equations (4.29) and (4.30),
together with the three plastic moments involved in the collapse mechanism,
Equations (4.26), are statically admissible with A = 1.25 and also safe, since none
of the values exceeds 30kNm in magnitude. This confirms that the collapse
mechanism is the right-hand beam mechanism, and that the collapse load factor
is 1.25. To provide a load factor of 1.4, the required value of the plastic moment
would therefore be

14
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4.3.4 Distributed loads

The frame whose dimensions and loading are shown in Fig. 4.7(a) will now be
analysed to illustrate the technique for dealing with distributed loads. Each
member carries a uniformly distributed load, whose resultant is indicated by the
broken arrows. Trial values of the plastic moments are shown against each mem-
ber; these are in the ratios 1:2:3 for the top rectangular frame, the bottom
columns and the bottoin beam, respectively. The load factor against plastic col-
lapse is to be 1.5.

E | | F
[ 6 I
(a) (b)
______________ > =
(c) (d)

Fig. 4.7 Two-storey rectangular frame
(a) Dimensions and loading: all loads uniformly distributed. Units: m, kN. Plastic

moments shown thus:

(b) Beam mechanisms
(c) and (d) Sway mechanisms
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In the first stage of the analysis it is assumed that plastic hinges can only
occur at the ends and mid-points of members. When the correct collapse mech-
anism, subject only to this restriction, has been deduced, appropriate adjust-
ments to the hinge positions will be made by the method described in Section
34.

On this basis there are 16 possible plastic hinge positions, at the cross sections
numbered in the figure, Since the frame has six redundancies, the number of in-
dependent mechanisms is

n—r = 16—6 = 10,

The independent mechanisms can be identified as follows. There is a beam-
type mechanism for each of the six members, two beams and four columns.
These six mechanisms are shown for convenience on the same diagram, Fig.
4.7(b). There are also two independent sway mechanisms, one for each storey, as
shown in Fig. 4.7(¢) and (d). Finally, there are two joint rotation mechanisms,

one at joint C and the other at D. The ten independent mechanisms are therefore
made up as follows:

6 beam-type
2 sway
2 joint rotation

10 independent mechanisms.

The independent equations of equilibrium derived from these mechanisms are:

375\ = —M, +2M, — M,
1350 = —M, + 2Ms — M
6N = —M, + 2M; — M
8\ = —My + 2Myo — My,
6N = +My —2My; + My
8\ = +Myy —2Mys + My
2N = —My +M; —M; + M
96N = —My1+ My — Mys + M
0 = +M, + My — M,
0 = —Mg — My + My,

Il

(4.31)

The derivation is straightforward, except that in order to determine the virtual
work done, care must be taken to ensure that each distributed load on a member
is multiplied by the average displacement of the member in the direction of the
load.

METHODS OF PLASTIC DESIGN 91

Leaving aside the joint rotation mechanisms, which are only used in combi-
nations, the work equations for the independent mechanisms, viewed as possible
plastic collapse mechanisms, are found from the equilibrium equations to be:

Beam AB 37.508 = 806; A= 2133
Beam CD 135A8 = 2400; A = 1.778
Beam-type AC  6A0 = 800; A =133
Beam-type CE 8\ = 1606, A =20
Beam-type BD 6A6 = 800; A= 133
Beam-type DF 8\ 1608; A =20
Sway ABCD 24\ = 809, A = 3333
Sway CDEF 960 = 1600; A = 1.667.

]

i

The lowest value of A for these mechanisms is 1.667 for the sway mechanism
CDEF.

The four beam-type mechanisms for the columns AC, CE, BD and DF have
very high values of A. It is concluded that they probably will not feature in any
combination which will produce a lower value of A than 1.667, and so they are
disregarded in what follows.

The first combination considered is of the two mechanisms with the lowest
values of A, namely the beam CD and the sway of CDEF. A direct addition of
these two mechanisms, as in Fig. 4.8(a), does not eliminate any hinges. However,
at the joint C there are hinge rotations of magnitude 6 in both CD and CE, so
that the work absorbed at this joint is 606 + 400 = 1006. By rotating this joint
clockwise through an angle 6 these hinges are both cancelled, and replaced by a
hinge rotation +6 in AC, as shown in Fig. 4.8(b). This reduces the work
absorbed at this joint to 200, a reduction of 808. A rotation of the joint D does
not achieve any reduction in the work absorbed. The work equation for this
combination is therefore obtained as follows:

Sway CDEF  96A8 = 1606; A = 1.667

Beam CD 13508 = 2400; A= 1.778

Combination Fig. 4.8(b) 231A0 = 4006 — 808 = 3200
N = 1.385.

If the sway mechanism of ABCD, Fig. 4.7(c), is added to the combination
just established, there is a cancellation of the hinge at section 8, joint C. The
resulting mechanism is shown in Fig. 4.8(c). The work absorbed at the hinge was
200 in both mechanisms, so that the reduction in the work absorbed is 400. Again
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(c) (d)

Fig. 4.8 Two-storey rectangular frame: combinations of mechanisms

there is no advantage in rotation of the joint D; a clockwise rotation 8 leaves the
total work absorbed at this joint unchanged. This implies that the mechanism of
Fig. 4.8(c) is overcomplete, as is otherwise evident from the fact that it involves
8 hinges, the number of redundancies r being 6. The work equation is obtained
as follows:

Combination Fig. 4.8(b) 2318

1l
]

3200; A = 1385

Sway ABCD 240 808; A = 3.333

Combination Fig. 4.8(c) 2550 = 4000 —406 = 3600
A = 1412.

It

The beam mechanism AB is now added to this combination. The resulting
mechanism is shown in Fig. 4.8(d), and it will be seen that there is a hinge can-
cellation at A. The work absorbed at A was 206 in both mechanisms, so that
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there is a reduction in the work absorbed of 408. The work equation is thus:

Combination Fig. 4.8(c) 2558 3606; A= 1412

Beam AB  37.5M0 = 809; A = 2.133
Combination Fig. 4.8(d) 292.5A8 = 4400 —400 = 4000
A = 1.368.

This is the lowest value of A which has been found. All possible combinations
have not been explored; in particular those involving the beam-type mechanisms
for the columns, and also the combination of beam AB with the sway of ABCD.
However, the above combinations appeared to be those most likely to lead to

low values of A, and so it is concluded that the mechanism of Fig. 4.8(d) is the
actual collapse mechanism, subject to any adjustments of the positions of the

plastic hinges which at this stage are located at the mid-points of the beams AB
and CD.

Before these adjustments are made, this conclusion is checked by a statical
analysis. Details need not be given; the plastic moments involved in the mechan-
ism of Fig. 4.8(d) are substituted in the equilibrium equations, and it is found
that A = 1.368, confirming the combining mechanisms calculation. The bending
moment distribution is:

Section 1 2 3 4 5 6 7 8
M +8.72 +20 —20 —4.62 +60 —60 +1641 +1590
Section 9 10 11 12 13 14 15 16

M +11.28 —889 —40 —4.10 +20 —40 —547 +40.

The bending moments above are safe, since the plastic moment is not ex-
ceeded at any of the cross sections considered. This confirms that the mechan-
ism of Fig. 4.8(d) is the actual collapse mechanism, subject to adjusting the pos-
itions of the plastic hinges in AB and CD. It is also necessary to check that the
plastic moment is not exceeded anywhere within the spans of the other four
members.

The maximum bending moment M™®* in each member may be calculated
using the results established in Section 3.4, namely

Yo = (Mg —Mp)/W. (3.16)

M™E = Mo+ Wyd 2L (3.17)

Here L is the length of the member, W is the normal load and My, M¢ and Mg
are the bending moments at the left-hand end, the centre and the right-hand end,
respectively. M™** occurs at a distance yo to the right of the centre of the

member. The sign conventions were specified in Fig. 3.2, The results are given in
Table 4.2.
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Table 4.2 Maximum bending moments in members

Member Mg Mo Mg W L Yo M= M,
AB +8.72 +20 —20 342 6 —0.84 +22.01 20
CD —4.62 +60 —60 1231 6 —045 +62.08 60
AC +15.90 +1641 + 8.72 109 3 —066 +17.20 20
BD —20 —4,10 +20 —109 3 - — 20
CE —40 —8.89 +11.28 109 4 - — 40
DF —40 —5.47 +40 —109 4 — — 40

For BD, CE and DF the calculated values of y, are greater in magnitude than
the semi-lengths of the members, so that there is no mathematical maximum
bending moment in these members. For AC, the maximum bending moment is
less than the plastic moment. It is only in AB and CD that maximum moments
occur which are greater than the plastic moment, and the biggest discrepancy
occursin AB, where the maximum moment is 10 per cent greater than the plastic
moment. Following the argument of Section 3.4, this establishes the following
bounds on A.:

0
1.368 <2, <1.368
(22 01) <12

1.243 <A, <1.368.

To improve this result, the plastic hinges in AB and CD are moved to the
positions of maximum bending moment given in Table 4.2, and a new value of A
is calculated by a kinematical analysis. Details will not be given; the result
obtained is

A = 1.342.

This value of A may be taken to be A, for all practical purposes. The required
values of the plastic moments for a load factor of 1.5 are then obtained by
multiplying the trial values by 1.5/1.342.

To obtain the exact value of A, a work equation could be written down for
the mechanism of Fig. 4.8(d) with the hinges in the beams AB and CD located at
variable positions, and the corresponding value of A\ minimized by differentiation.
This analysis gives the value 1.342, agreeing with the above value to four signifi-
cant figures. The values of y, are found to be —0.78 m for AB and —0.45 m for
CD.

A general analysis of the problem of determining the correct positions of the

plastic hinges within the members of multistorey, multibay rectangular frames,

together with the corresponding load factor, has been given by Horne (1954a).
However, the above procedure will be found to give results of sufﬁment accu-
racy; a summary of the steps involved is as follows:

GhmA s
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(a) Determine the ‘correct’ collapse mechanism, assuming that any plastic
hinges within those members which carry uniformly distributed loads occur at
mid-span.

(b) Perform a statical check.

(¢) Determine the positions and magnitudes of the maximum bending mo-
ments in the members which carry uniformly distributed loads.

(d) For the members which carry uniformly distributed loads in which plastic
hinges occurred at mid-span in the ‘cérrect’ mechanism, move those hinges to
the positions of maximum moment found under (c), and analyse the resulting
mechanism kinematically, The corresponding load factor may then be assumed
to be A..

4.3.5 Lean-to frame

The final example of the combining mechanisms technique is the frame shown in
Fig. 4.9(a). This raises a new issue which will become apparent when the combi-
nation of independent mechanisms is considered. The load factor required is
1.5; the members all have the same plastic moment and a trial value of 20kN m
is assumed. The frame is rigidly built-in at section 4, but is pinned to a rigid base
at the other foot.

For this frame n =4 and r =2, so that there are (n —r) =2 independent
mechanisms. These are shown in Fig. 4.9(b) and (c). In Fig. 4.9(b) the sway
motion is specified by a rotation 8 about I, the instantaneous centre of rotation
for beam 13, whereas in the beam mechanism of Fig. 4.9(c) the displacements
and hinge rotations are given in terms of the rotation —¢ of the hinge at section
1. The work equations for these two mechanisms are:

Sway Fig. 4.9(b) 120M\d 1600, A = 1.333
Beam Fig. 4.9(c) 40\¢ = 80¢; A= 2.

The only combination to consider is an addition of these two mechanisms
with cancellation of the hinge at section 1. This cancellation is achieved if ¢ =
36. The beam equation then becomes

12000 = 2400,

and the work absorbed at the plastic hinge at section 1 is 608 for both this
mechanism and the sway mechanism. The work equation for the combined
mechanism, which is shown in Fig. 4.9(d), is therefore derived as follows:

Sway Fig. 4.9(b) 1200 = 1600; A= 1333
Beam Fig. 49(c) 12000 = 2400(p = 30); A=2
Combination Fig. 4.9(d) 240N\ = 4000 —1200 = 2806
A = 1.167.

Il

Il
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(c) (d)

Fig. 4.9 Lean-to frame

(a) Dimensions and loading. Units: m, kN
(b) Sway mechanism

(c) Beam mechanism

(d) Combined mechanism

This is the lowest of the three values of A, and so it is concluded that the mech-
anism of Fig. 4.9(d) is the actual collapse mechanism. A statical check is easily
made in the usual way, and will not be given. The required value of the plastic
moment is

1.5

The chief point to note about this calculation is the need to arrange for the
hinge rotations at section 1 to be the same in magnitude, so that full cancellation
is achieved. It should also be appreciated that the quite complicated kinematics
of the combined mechanism of Fig. 4.9(d) did not have to be worked out from
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first principles; it was only necessary to add the displacements and hinge ro-
tations of the two combining mechanisms.

4.4 Other methods for determining the collapse load factor

The combining mechanisms technique represerts an upper bound, or kinematic
approach to the determination of A, for a given frame and loading. Lower bound
methods were developed simultaneously by Horne (1954b) and English (1954);
Horne’s method of plastic moment distribution, as its name implies, has some
features in common with the well-known elastic moment distribution procedure
for plane frames.

The lower bound approach is readily expressed in a form suitable for solution
by digital computing techniques. Consider for example the frame of Fig. 4.5(a).
The equations of equilibrium for this frame were shown in Section 4.3.2 to be

1000 = —M, +M, — My + Ms + My — M. (4.18)
60N = —M, +2M; —M,. (4.19)
TIN = —M, + 2M; — M. (4.20)

0 = —M, —Ms + M. (4.21)

The ten bending moments cannot exceed the plastic moment 30kNm in
magnitude, so that

—30<M;<30 (i=1,2,...,10). (4.32)

The collapse load factor A, is then the highest value of A which can be found,
subject to the four constraints imposed by the requirements of equilibrium,
Equations (4.18)—(4.21), and the twenty constraints imposed by the require-
ments of yield, inequalities (4.32).

This formulation of the problem was used by Neal and Symonds (1950—1951)
in developing a method of analysis based on the solution of systems of linear
inequalities by a procedure due to Dines (1918—19). However, it represents a
standard problem in linear programming, and was first identified as such by
Charnes and Greenberg (1951). Further discussions have been given by various
authors, including Livesley (1956), Prager (1957) and Heyman (1959).

The duality principle of linear programming may be used to formulate pro-
cedures which are upper bound or kinematic in character. This was pointed out
by Dorn and Greenberg (1957), Charnes, Lemke and Zienkiewicz (1959) and also
Hoskin (1960). A procedure for developing simultaneous upper and lower
bounds was developed by Munro (1965). A full discussion of the relationships
between the static and kinematic theorems and primal-dual linear programs has
been given by Munro and Smith (1972).
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Examples

1. In the fixed-base, pitched-roof portal frame of Fig. 4.1(a), the uniformly dis-
tributed vertical loads on the rafters, shown as 18AkN and 26A kN, are reduced
to 9AKN and 17AkN, respectively, the other loads remaining unchanged. If all
the members of the frame have the same plastic moment 30 kN m, find the col-
lapse load factor.

2. In the fixed-base, pitched-roof portal frame of Fig. 4.1(a), the uniformly dis-
tributed vertical loads on the rafters, shown as 18\ kN and 26\ kN, are increased
to 28\ kN each. All other loads are zero, and all members of the frame have the
same plastic moment 60 kNm. Find the collapse load factor. If both the feet are
pinned rather than fixed, what is the new collapse load factor?

3. A fixed-base, pitched-roof portal frame ABCDE consists of two columns AB
and ED, each of length 4.5m and with the feet A and E 12m apart, together
with two rafters BC and DC of equal length and inclined at 15° to the horizontal.
All members of the frame have the same plastic moment 60 kN m.

If each rafter carries a uniformly distributed vertical load 351 kN, find the
collapse load factor, and show that it is unchanged if in addition there is a
uniformly distributed horizontal load 15\kN acting on the column AB in the
direction AE.

4. A pinned-base, saw-tooth frame ABCDE has two columns AB and ED, each of
length 3.6 m and with the feet A and E 7.8 m apart. The rafters BC and DC are
of length 7.2 m and 3 m, respectively.

The rafter BC carries a uniformly distributed vertical load 40AkN. If all
members of the frame have the same plastic moment 25 kN m, find the collapse
load factor.

5. A lean-to, fixed-base frame ABCD consists of two columns AB and DC, whose
lengths are 3m and 3.9 m, respectively, the feet A and D being 4.8 m apart,
together with a rafter BC. All members of the frame have the same plastic
moment 25 kN m.

If the rafter BC carries a uniformly distributed vertical load SONkN, find the
collapse load factor.

If in addition there is a uniformly distributed horizontal wind load 152 kN on
the column AB in the direction AD, and also a uniformly distributed wind suc-
tion 2.5AkN on the rafter BC normal to this member, find the new value of the
collapse load factor.

6. A pinned-base, pitched-roof portal frame ABCDE has columns AB and ED
each of height 3 m, the feet A and E being 12 m apart. The rafters BC and DC
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are of equal length and inclined at 224° to the horizontal. The knees B and D are
connected by a tie-rod which prevents any relative horizontal movement but
cannot sustain any appreciable bending moment. All members of the frame have
the same plastic moment M,,. Each rafter carries a uniformly distributed vertical
load S0AKN. Find the value of M}, which provides a load factor of 1.5 against
plastic collapse. What is the tension in the tie-rod at collapse?

7.1In a two-bay, fixed-base base rectangular frame ABCDEF the three columns

AB, FC and ED are each of length 4m and plastic moment 30 kN m, while the

two beams BC and CD are each of length 5m and plastic moment 60 kNm. A

horizontal load H acts at B in the direction BC, and in addition there are concen-

trated vertical loads P and Q at the centres of the beams BC and CD respectively.
Find the collapse load factors for the load combinations:

(@) H=25AkN, P=40AkN, Q=40AkN.
(b) H=17.50kN, P=42AkN, Q= 56\kN.

Estimate the change in the collapse load factor in case (a) if the loads P and Q
are changed to 80AkN uniformly distributed over each beam.

8.In a two-storey, single-bay, fixed-base rectangular frame ABCDEF the con-
tinuous columns ABC and FED are each of total length 8 m, and AB=BC=
DE =EF =4m. The feet A and F are 7.2 m apart, so that the upper and lower
beams CD and BE each span 7.2 m.

There are concentrated vertical loads ¥y and ¥V, at the centres of the beams
CD and BE, respectively, and concentrated horizontal loads H; and H, at D and
E, respectively, acting in the directions CD and BE. All members of the frame
have the same plastic moment 40 kN'm,

Find the collapse load factors for the load combinations:

(a) ¥, =200kN, V¥, =20\kN, H, =10\kN, H, = I0\NKkN.
(b) ¥, =300kN, V, =30MkN, H, =0, H, = 15\kN.

9.1n a three-storey, single-bay, fixed-base rectangular frame ABCDEFGH, each
storey is of height 3m and the span of each beam is also 3m. The plastic mo-
ments of the members are as follows:

'Upper storey columns CD and FE: 30kNm
Middle storey columns BC and GF: 60kNm
Lower storey columns AB and HG: 90kNm
Beam DE: 30kNm

Beams CF and BG: 60kNm

Concentrated horizontal loads 10AkN, 200 kN and 30AkN are applied at E, F
and G respectively, all these loads acting in the same direction. Find the collapse
load factor.

s
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10. In a multibay, fixed-base, pitched-roof portal frame all the bays are of ident-
ical shape, with column height h, span [ and rafter slope 0. All rpembers have
plastic moment M, . Each rafter carries a uniformly distributed vertical load AW.
Show that collapse is confined to the outermost bay at each end of the frame,
and that the collapse load factor is 4My(2h + [ tan 0)/Wih, neglecting the small
correction due to the fact that plastic hinges do not form at the apices of the
outermost frames but instead at a small distance away from these apices.

11. A semi-circular arch of radius R is of uniform cross section, with plastic mo-
ment M, and is pinned at both feet to rigid abutments. It carries a central
vertical concentrated load W. Find the horizontal abutment thrust and the value
of W at collapse, neglecting the effect of axial thrust on the plastic moment.

12. In a two-bay, fixed-base rectangular frame, each bay has a span 8 m. One bay
ABCDE is of height 8 m while the other bay EDFG is of height 4 m. The column
EDC is common to both bays and E is its base: ED = DC = 4 m. The taller bay
has a column AB of length 8 m, and the other bay has a column GF of length
4m, the bases being A and G, respectively. All members of the frame have the
same plastic moment 48 kN m.

The beams BC and DF, each of span 8m, carry central concentrated vertical
loads 9A KN and 27\ kN, respectively. Horizontal concentrated loads 18\ kN and
9\ KN are applied at C and F, respectively, both acting in the same direction BC.

Find the collapse load factor.



5 Estimates of Deflections

5.1 Introduction

The plastic methods described in Chapters 3 and 4 are concerned solely with
determining the strength of frames. However, it is possible that excessive deflec-
tions might occur in a frame before the plastic collapse load was attained,
rendering the structure unserviceable. The design would then need to be based
on a serviceability criterion and load factor, rather than on the collapse load fac-
tor. There is therefore a need for methods which enable the deflections of a
frame to be calculated at the point of collapse, and the purpose of this chapter is
to describe such methods.

A further reason for discussing this question is that the plastic theory assumes
that the deflections developed in a frame prior to collapse have a negligible
effect on its geometry, so that the equations of equilibrium are sensibly those
for the undistorted frame. It may therefore be advisable in some cases to esti-
mate the deflections at the point of collapse to see whether they are sufficiently
large to invalidate the assumption of unaltered geometry. ‘

In much of this chapter proportional loading will be assumed. However, in
practice a structure may experience variable and repeated loading, as in the case
of a building frame which may be subjected to several different severe combi-
nations of wind and snow loads during its lifetime. It will be seen in Chapter 8
that this type of loading can cause a progressive increase in the deflections, even

if the peak values of the loads are always appreciably less than those which-

would cause plastic collapse. This should be borne in mind when assessing the
value of deflection estimates obtained under the assumption of proportional
loading. .

It is commonly assumed in the elastic analysis of beams and plane frames that
deflections due to shear and axial forces are negligible by comparison with those
due to bending. If this is accepted for partially plastic behaviour, the relationship
between load and deflection can in principle be determined once the bending
moment-curvature relation is specified. Some examples of this process are given
in Section 5.2 for simply supported beams of rectangular cross section, assuming
ideal plasticity. The calculations become extremely cumbersome for structures
of any degree of complexity, and approximations must be made to produce a
workable method. These are discussed in Section 5.3, and a method for estimat-
ing the deflections of a frame at the point of collapse is then given in Section
54.

s
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5.2 Load-deflection relations for simply supported beams
5.2.1 Rectangular cross section: ideal plastic material

Consider a beam of rectangular cross section, breadth B and depth D, which is
simply supported over a span /. The beam is initially assumed to carry a centr.al
concentrated load W, and the bending moment diagram is then as shown in Fig.

5.1.
(a) w
A i .8,
R oT
R /e }
Arq_.! A ZA Section A-A
a
x ‘
1 | N |
2 2
(b)
e
(o]
My M| | W
4

M

Fig. 5.1 Simply supported rectangular section beam with central concentrated

load
(a) Beam and loading: plastic zones shaded
(b) Bending moment diagram

Tt will be assumed that the beam is of ideal plastic material, initially free from
stress, and that the load has been steadily increased until plasticity has developed
in the regions shown. The bending moment-curvature relation for a beam of this
cross section and material was developed in Section 1.3.1, and can be summar-
ized as follows:

elastic —, 0<x<a (5.1)
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M g\ l
ielded — = 1.5—0.5(-¥ <x<—
yielde M, (K) ALY (5.2)
2z Ky
D= & (5.3)

Equation (5.2) was developed for the case of pure bending; it will now be as-
sumed that it is applicable when shear forces are present.
From the bending moment diagram it is seen that

M, = Lwa. (5.4)

The central bending moment is Wi/4. Thus, if W, denotes the value of W at
which yield first occurs at the centre of the beam,

My = iWol, (5.5)
so that
(W
a=3 (W) (5.6)
In addition,
M= 3iWx, for 0<x< é—, (5.7

M o_x
== (5.8)

Using this equation in combination with Equations (5.1) and (5.2), the curva-
ture can now be expressed as a function of x as follows:

x
K =Ky(a_), 0<x<a
-1/2
K =K 3—2£ a<x<l— 5.9
v P s = \2. 9)

The central deflection § is found by the unit load method (Section 2.5.5) to

be given by
!

2
5 =J xkdx (5.10)
0

a L L2
=f ¥ x?dx +f kyx (325 ax.
o 4 a a
Evaluating these integrals,-and eliminating @ by using Equation (5.6),
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iy (Wo\? 1% w\'"?
§ =22 [5—(3+—|(3—2-| |
12 (w) [5 (3+ wo)( 2wo)

The deflection 8, when yield first occurs at the centre of the beam is ob-
tained by putting W = W, giving
kg

§g = —Y
0 12

5 3 —%2 B _EV_ B _‘;_V_ 1/2
5 = (W) [5 (3+ Wo) (3 2 Wo) ] (5.11)

a result first obtained by Fritsche (1930).
Failure by plastic collapse will occur when the central bending moment Wi/4
reaches the plastic moment M, = 1.5M;,. The collapse load W, is therefore given

by

It follows that

MD = % wcl,
and comparing this with Equation (5.5)
We ity
Wo M,

The deflection 8, at the point of collapse is then found from Equation (5.11),
with W= 1.5W,, to be 2.225,.

The load-deflection relation is plotted in Fig. 5.2, curve (i). Once the collapse
load W, = 1.5W, has been attained, the deflection can grow indefinitely due to
the rotation of the central plastic hinge. However, the deflection developed
before this load is reached is finite and of the same order as the elastic deflection
at the point of first yield.

The shape of the boundaries of the yielded zones can be found from
Equations (5.3) and (5.9), which when combined give

Using Equation (5.6) to eliminate a,

2\, 4x(W
D 1 \Wo)’

so that in this case the boundaries are parabolic. Fig. 5.3(a) shows the shape of
these zones when W= W,.

The analysis can readily be extended to cover the case of symmetrical two-
point loading, as in Fig. 5.3(b). Details will not be given, but attention will be
drawn to the salient features. The central portion of the beam is subjected to a
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Fig. 5.2 Load-deflection relations for simply supported beam of rectangular
cross section

(i) Central concentrated load
(ii) Symmetrical two-point load

constant bending moment and therefore bends into an arc of a circle. The shape
of the yielded zones is shown in the figure for the case in which the distance be-
tween the loads is one-third of the span, and the central bending moment is the
plastic moment M,,. The load-deflection relation is shown in Fig. 5.2, curve (ii).
It will be seen that the collapse load is only reached when the deflection
becomes infinite, by contrast with the previous case of a central concentrated
load. This is because at collapse the plastic moment is attained over a finite
length of the beam rather than at a single cross section. The infinite curvature
associated with the plastic moment therefore causes an infinite deflection.

If the beam carries a uniformly distributed load, the distribution of bending
moment is parabolic, and is shown in Fig. 5.3(c) at the collapse load. The
yielded zones in this case have boundaries which are linear. The load-deflection
relation has the same feature as that for the two-point loading, the deflection
becoming infinite as the collapse load is attained. This is due to the form of the
bending moment diagram. At the centre of the beam the shear force and thus
the rate of change of bending moment with distance along the beam is zero. This
approximates more nearly to the condition of pure bending over a finite length
of the beam, as in Fig. 5.3(b), than the linear rate of change of bending moment
with distance along the beam depicted in Fig. 5.3(a).
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Fig. 5.3 Shape of plastic zones for simply supported beams of rectangular cross
section at collapse

(a) Central concentrated load
(b) Symmetrical two-point load
(c) Uniformly distributed load

5.2.2 Other cross sections and material properties

The analyses just described assumed the relationship between bending moment
M and curvature k which was derived in Section 1.3.1 for a rectangular cross
section beam of ideal plastic material. This derivation assumed a linear variation
of longitudinal strain € across the section. If this assumption is retained, the
(M, k) relation can be determined for any assumed relationship between longi-
tudinal stress o and strain e, and for any cross section. However, it will be récalled
from Section 1.2 that for mild steel the yielding process is discontinuous, so that
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only the average strain over a finite length of the beam can be presumed to vary
linearly across the section.

As pointed out in Section 1.2, the upper yield phenomenon occurs in spec-
mens of annealed mild steel, but is destroyed by cold-working, and is not nor-
mally present in rolled steel sections. It is usually taken into account only in
careful experimental work aimed at verifying fundamental theory. Investigations
of this type were carried out on beams of rectangular cross section by Cook
(1937) and by Roderick and Phillipps (1949). Roderick and Heyman (1951) ex-
tended the theory to include the effect of strain-hardening. These investigations
provided convincing evidence in support of the assumptions made.

Dwight (1953) considered non-linear (o, €) relations appropriate to alu-
minium alloys, and obtained good agreement with experiments on beams of
rectangular cross section. In this work the beams were bent about a principal
axis; difficulties arise when bending takes place about an axis other than the
principal axis, and these were discussed by Barrett (1953).

Several investigations have been carried out with the purpose of correlating
the observed load-deflection behaviour of beams of I-section with actual (o, €)
relations obtained from material tests. These include the work of Roderick
(1954), Roderick and Pratley (1954) and Sawyer (1961). The presence of
residual stresses obviously influences-the results, and their effect on the (M, k)
relation has been studied by several investigators, including Young and Dwight
(1971).

5.3 Effects of strain-hardening and shape factor

The effect of strain-hardening on the load-deflection behaviour of beams of
I-section was studied by Hrennikoff (1948). The assumed (o, €) relation was as
shown in Fig. 5.4(a), in which the material properties characterizing the onset of
strain-hardening were as follows:

€s = 16.4¢,
Ey = E[48,

Hrennikoff assumed that the thickness of each flange was negligible as com-
pared with the depth of the beam, so that each flange area could be regarded as
concentrated at a constant distance from the neutral axis. The form of the
(M, «) relation then depends only on the ratio of the total flange area 4¢ to the
web area 4, . Taking this ratio as unity, it can be shown that the shape factor » is
1.125, so that M, = 1.125M,. The corresponding (M, «) relation is shown in
Fig. 5.4(b). It will be seen that strain-hardening commences when x = 16.4ky,
this being the curvature at which e reaches the value e in the outermost fibres.

This (M, «) relation was used by Horne (1948) to analyse the pin-based
rectangular frame of height / and span 2/ shown in Fig. 5.5. The loading pro-
gramme was first to bring the vertical load ¥ up to the value 2.84M /1, which

v
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just causes the yield moment to be attained at the most highly stressed cross
section 3. V was then held constant while H was increased steadily. The relation
between H and the corresponding deflection £ is shown as curve (i) in Fig. 5.5.

A

o Mﬁ
Initial slope Es My 1425 /
P o
1.0 H
0,
|
l
05 if
Al |
™ Siope E I
|
! . 164l .
o € €, € 0 1 10 20 K
K
(a) (b)

Fig. 5.4 Bending moment-curvature relation for l-section with strain-hardening

(a) Stress-strain relation
(b) Bending moment-curvature relation: A¢= Ay

The behaviour is elastic until H = 0.71Mp/I, when the yield moment is at-
tained at section 4, While the frame is responding elastically to H, the bending
moment at section 3 does not change, and so remains at the yield value. As H
increases further, yield spreads into the webs of the members at sections 3 and 4
and also along the members for some distance from these sections, and the slope
of the load-deflection relation decreases steadily. Strain-hardening commences at
section 4 when H = 1.02M,/I, and at section 3 when H = 1.18Mp/I.

It is readily verified that, on the simple plastic theory, plastic collapse occurs
with plastic hinges at sections 3 and 4 when H = 1.16My/l, with V held at the
value 2.84M,/I. The indefinite increase of deflection under constant load pre-
dicted by the simple theory is seen from Fig. 5.5 to be prevented by strain-
hardening. Nevertheless, the deflections do increase rapidly with small increases
of the load above the predicted collapse load.

It is instructive to compare this load-deflection relation with two others
which are shown in Fig. 5.5. Curve (ii) shows the effect of neglecting strain-
hardening (E = 0). Tt differs little from curve (i) until H = 1.16Mp/I, the plastic
collapse load predicted by the simple plastic theory.
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Fig. 5.5 Load-deflection relations for pin-based rectangular frame

(i) Strain-hardening considered
(a) Yield (b) Start of strain-hardening at 4
(c) Start of strain-hardening at 3
(ii) Strain-hardening ignored
(iii) Ideal (M, k) relation assumed

Curve (iii) also neglects strain-hardening, and in addition neglects the influence
of the spread of plastic zones along the members. This is equivalent to assuming
a shape factor of unity, so that each member is assumed to remain elastic until
the plastic moment is reached, as in the step-by-step calculations of Chapter 2
(see Fig. 2.1).

At the plastic collapse load the calculated deflections are as follows:

() v=1125 E,=48 h=0.56MpI*/EL
(b) »=1.125 E,=0 h=0.61MI*/EL
© v=1 Es=0 h=0.53MI?/EI

(a) may be considered to represent closely the way in which an actual structure
would behave. The neglect of strain-hardening alone, as in (b), increases the
deflection at the point of collapse by 9 per cent. The combined effects of
neglecting strain-hardening and assuming a shape factor of unity, so that there is
no spread of plastic zones along the members, as in (c), reduces this deflection
by 5 per cent.

In general, the changes in the deflections at the point of collapse which can
be attributed to strain-hardening and to the spread of plastic zones will be small.
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Since these two effects tend to cancel one another, it is reasonable to neglect
them. This forms the basis of the approximate method for estimating deflections
at the point of collapse which is described in Section 5.4.

Several other studies of the problem of determining load-deflection relations
for redundant structures have been made. Horne (1951) considered the effect of
strain-hardening for builtin beams of both rectangular and I-section. Rawlings
(1956) analysed rectangular frames whose members were of rectangular cross
section, taking the upper yield stress into account. The observed behaviour of
pinned and fixed-base rectangular frames of I-section was compared by Roderick
(1960), using an analysis which took account of strain-hardening.

5.4 Estimates of deflections at point of collapse

5.4.1 Assumptions

The estimation of deflections at the point of collapse is greatly simplified if the
effects of strain-hardening and the spread of plastic zones are neglected. This is
unlikely to lead to serious error, as pointed out in Section 5.3. A further assump-
tion which is made for proportional loading is that as the loads are increased to
their collapse values, the rotation at a plastic hinge never ceases once it has
formed. This implies that at any cross section,

—My <M<M,, 0=0
M=—M,, 6<0 (5.12)
M=M,, 6>0.

This is not necessarily valid, even for proportional loading, as pointed out by
Finzi (1957), and for more arbitrary loading programmes it can obviously be
incorrect. Nevertheless, deflection estimates based on this assumption have been
found to be of value, and the only alternative would be to trace the complete
behaviour of a frame, for a given programme of loading to collapse, by the
laborious step-by-step process described in Section 2.5.

Acceptance of this assumption implies that each plastic hinge involved in the
collapse mechanism will form in turn and then continue to undergo rotation.
Thus just before the collapse load is attained, all except one of these hinges will
have formed and undergone rotation. At the point of collapse, the bending mo-
ment at the position of the last hinge to form reaches the plastic value, but
before motion of the collapse mechanism ensues the rotation at this hinge will
be zero. The identification of the last hinge to form is the key to the various
methods which have been evolved.

When the effects of strain-hardening and the spread of plastic zones are
neglected, the members of a frame at the point of collapse will be elastic every-
where except at the plastic hinges. The deflections and hinge rotations can there-
fore be calculated by adapting the techniques of elastic structural analysis to
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take into account the conditions (5.12). The first method to be proposed, by
Symonds and Neal (1951, 1952), was based on the slope-deflection technique.
However, a virtual work approach is advantageous, as first pointed out by
Tanaka (1961) and Heyman (1961), and will be used here.

5.4.2 Basic equations

If a frame subjected to concentrated loads has n unknown bending moments and
r redundancies, there are

(n —r) independent equations of equilibrium
and r independent equations of compatibility.

As explained in Section 2.5.2, the equations of equilibrium can be found by the
principle of virtual displacements, using the independent mechanisms.

The equations of compatibility can be found by the principle of virtual
forces. The procedure was explained in Section 2.5.3, and is summarized here
for convenience. The relevant form of the principle of virtual forces is

m*M
EI

ds+Y m*¢ = 0 (5.13)

where

=
i

actual bending moment

M/EI = actual curvature

<
I

actual hinge rotation

* = hypothetical residual moment.

The integration covers all members of the frame, and the summation covers all
positions where plastic hinge rotation has occurred.

The integral is evaluated by noting that for a typical uniform straight segment
AB of length L, within which both m™* and M vary linearly,

A *
f m'M L [m% QM + M) + msQMs +My)).  (5.14)

g = —
s FEI 6ET

A particular deflection 8 may be found by the unit load form of the principle

of virtual forces. A virtual unit load corresponding to 8 is imagined to be applied
to the frame, and any virtual bending moment distribution M™* satisfying the

requirements of equilibrium with this load is obtained. As explained in Section
2.5.5, this gives the result

M*M
EI

5 = ds + Y M*¢, (5.15)
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where the symbols have the same meaning as for Equation (5.13). The integral
can be evaluated using Equation (5.14), with M* replacing m*.

5.4.3 Fixed-ended beam with off-centre load

The first example to be considered is the fixed-ended beam of length 3/ which is
subjected to a load W at a distance 2/ from one end, as shown in Fig. 5.6(a). The
beam is of uniform section with flexural rigidity £7 and plastic moment M. For
this beam

n=3
r = 2 = number of independent equations of compatibility
n—r = 1 = number of independent equations of equilibrium.

The equation of equilibrium is obtained from the mechanism of Fig. 5 .6(b) by
the method of virtual displacements, and is

—M, +3M, —2M; = 2WL (5.16)

This mechanism, with plastic hinges replacing the hinges shown, is the collapse
mechanism, and at collapse

My =M, My =M, M3 =—M,
w, = 3M
1

During collapse the shapes of the two segments 12 and 23 remain unchanged,
the increases of deflection being due solely to the rotations at the three plastic
hinges. Fig. 5.6(c) shows the corresponding deflected form of the beam, the
hinge rotations being the total rotations which have occurred both before and
during collapse. This situation is now analysed, and the two compatibility
equations are obtained by using two hypothetical residual moment distributions
m™ in Equation (5.13).

From Equation (5.16) it follows that residual moments must satisfy

—my + 3m, —2m3 = 0. (5.17)

This equation expresses the fact that any distribution of residual moment must
vary linearly across the beam, as in Fig. 5.6(d). This is otherwise obvious because
the shear force is constant over the whole span when W = 0.

Since #=2, any residual moment distribution can be formed as a linear
combination of two independent distributions. Two possible independent distri-
butions (i) and (ii) are entered in the first two rows of Table 5.1, and are shown
in Fig. 5.6(¢). Any other distribution can be formed as a linear combination of

(i) and (ii).
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Fig. 5.6 Fixed-ended beam with off-centre load

(a) Dimensions and loading

(b) Virtual mechanism

(c) Deformations during collapse

(d) Residual moment distribution

(e) Independent residual moment distributions

The deflection § corresponding to W is determined from Equation (5.15),
using any distribution of bending moment M™ in equilibrium with a unit load at
section 2. This can be found from Equation (5.16) with W = 1; one possibility,
shown as distribution (iii) in Table 5.1, is M3 = M3 = 0, so that M} = —2L.

Table 5.1 is completed by the inclusion of the actual displacement system
during collapse. Using the residual moment distribution (i) in Equation (5.13)
and evaluating the integral with the aid of Equation (5.14),

21 {
6—E‘I‘[3(_2Mp +Mp) + (2Mp —Mp)] + @[ZMp _Mp]

+3Y;+yY, =0
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Table 5.1 Virtual force and actual displacement systems for beam of Fig. 5.6

Section _1 2 3

Virtual force systems

m* @ 3 1 0

(i) 0 2 3
M* (iii) —21 0 0
Actual displacement system
EIx=M —Myp My —Myp
¢ Yy 23 Vs

_ Myl _
gl T3ty =0. (5.18)

Proceeding similarly with distribution (ii), it is found that

Myl

= 0. 5.
ET + 2y, +3¢;, 0 (5.19)

These are the two equations of compatibility. An expression for 6 is found
using distribution (iii), in conjunction with Equation (5.15); this gives
_2MR1P

= — . 520
5= S22 (5.20)

Equations (5.18)—(5.20) are insufficient in themselves to determine the four
unknowns Yy, ¥», ¥3 and 8. A way must be found of identifying the last hinge
to form at the point of collapse. One method is to solve these three equations to
give

5 | Myl
= — — B 521
Vi T (5.2)
_ 38 Myl
Y2 = 21 2EI’ (5.22)
§ Myl
_ o Myl 523
Vs =~ (5.23)

These three equations hold true at any stage during collapse. It will be seen
that the first term in each equation represents the mechanism motion during col-
lapse, since if changes are denoted by the prefix A,

AS 3A6 A8

Ay, = _’2"1" Ay, = 7: Ays = —-l_'
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The last hinge to form can now be identified by noting that each hinge ro-
tation must have the same sign as the corresponding plastic moment given in
Table 5.1. It follows that

M, 12

<0 e
Vi s 3ET
M,1?

>0 6>-=2
V2 = EY
J. <0 5> Mal®
= = .
3 6EI

Each of these three conditions sets a lower limit on the value of §, the
greatest of which corresponds to the condition Y; <0. It follows that the last
hinge forms at section 1, so that at the point of collapse y; = 0. The deflection

8¢ at the point of collapse is therefore

2M, 12
8o = ——.
3ET

The values of ¥, and Y3 at the point of collapse are obtained from Equations
(5.22) and (5.23), with 8 = 6, and are

l
_ P
(wz)c - 2ET
— _1491
(l:l/?a)c - ZEI-

The residual bending moment distributions (i) and (ii) cannot be uniquely
chosen. Any two independent distributions which satisfy Equation (5.17) will
suffice to establish two compatibility equations. The working will, of course,
tend to be arithmetically easier if the distributions involve zeros. Similar remarks
can be made about the distribution M*.

The method just described could be used for more complex problems.
However, it is possible to shorten the working slightly by assuming at the outset
that a particular hinge is the last to form. Thus, in the above example, it might
have been assumed (incorrectly) that the last hinge formed at section 3. It would
then follow from Equations (5.18)—(5.20) that

_ Myl
4 T 4ET
M,l
V2 = T

Y3 =0

E,
:
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_ e
6EI

Both ¥, and y, are seen to have the wrong sign, so that the last hinge cannot be
formed at section 3. The solution may be modified by adding the deflections
and hinge rotations of the mechanism of Fig. 5.6(b), for compatibility is not
thereby affected. This gives

_ Myl
V1 = g 0
_ Myl
Vo = =g T30
‘1’3'_——29
MyI?
§ = —2— + 209,
rp + 20

By inspection, 8 = MyI/4E] brings /; to zero and makes Y, positive and /3
negative, and with this value of 6 the previous solution is obtained.

5.4.4 Rectangular frame

Consider the rectangular frame whose dimensions and loading are shown in Fig.
5.7(a). All the members of this frame are of the same uniform section, with
flexural rigidity EI and plastic moment My, It is required to find the horizontal
and vertical deflections A and v, which correspond to the loads H and 7, at the
point of collapse. The first case to be examined will be H=V = W. For this
frame

n=32,5

r = 3 = number of independent equations of compatibility

1l

n—r = 2 = number of independent equations of equilibrium.

The two independent equations of equilibrium may be obtained by applying
the virtual displacement method to the two independent mechanisms shown in
Fig. 5.7(b) and (c), and are

_Ml +M2 —M4 +M5 = HI.
—M, +2M; —M, = V1.
When H= ¥V =W, collapse occurs by the combined mechanism shown in Fig.

5.7(d) when W= W, = 3M,/l. The coresponding bending moment distribution
is given in Table 5.2.

(5.24)
(5.25)
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W

(c) (d)

Fig. 5.7 Fixed-base rectangular frame

(a) Dimensions and loading
(b) and (c) Independent virtual mechanisms
(d) Collapse mechanism

Three independent residual moment distributions m™ are needed to establish
the three compatibility equations. These must satisfy the two equations of
equilibrium for residual moments which follow at once from Equations (5.24)
and (5.25), and are

'

—my +my —my +ms = 0. (5.26)
—m, + 2m3 Mg = 0. (527)

The particular distributions selected are shown in Table 5.2; they follow a
pattern suggested by Heyman (1961) which is readily extended to multistorey,
multibay frames.

Two distributions of bending moment M* are required for the determination
of the deflections /# and v. These must satisfy respectively the requirements of
equilibrium with the unit loads H=1 (with ¥'=0) and V' =1 (with H=0).
These are derived from Equations (5.24) and (5.25), and are also shown in Table
5.2.

Using in turn the distributions (i)—(v) in Equations (5.13) and (5.15), as
appropriate, the following equations result:

Myl
1261

+yy +05¢; =0

e

S
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ESTIMATES OF DEFLECTIONS 119
IZZ'II +05¢3+Ys+yYs =0
];%+1[/3+w4 =0
]Z—pEl;+0.511[Jg = 7.

W, is taken as zero, as there is no hinge at section 2 in the collapse mechanism.

Table 5.2 Virtual force and actual displacement systems for frame of Fig. 5.7

Section 1 2 3 4 5

Virtual force systems
*

m (i) 1 1 0.5 0 0
(i) 0 0 0.5 1 1
(ii) 0 1 1 1 0

M* (iv) —1 0 0 0 0
) 0 0 0.51 0 0

Actual displacement system

Elxk=M —My 0 My —My My

¢ 12 23 Vs Va Us

Making the arbitrary assumption that Y5 = 0, these five equations are easily
solved. The solution is given below; to each resulting hinge rotation and deflec-
tion there has been added a term for the motion of the collapse mechanism of
Fig. 5.7(d).

b T
Yy = 20

Va =—%%,§—20

h =v=]‘:2{’2+19.
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To conform with the signs of the plastic moments in the collapse mechanism,
Y1 and Y4 must be negative and {3 and Y5 must be positive. By inspection, this
is first achieved when

- Mol
12ET
With this value of 6, Y is zero and there is conformity of signs at the other

three hinges. It is concluded that the last hinge forms at section 1, and it follows
that at the point of collapse

() = 0
(V3)e = 1;'&%

(Yade = —%{[EL;
(W) = 28

5.4.5 Fartial collapse

In the example just considered the collapse mechanism was of the complete
type, with (r + 1) plastic hinges in a collapse mechanism which had only one
degree of freedom. The entire frame was therefore statically determinate at col-
lapse. When the collapse is partial, with fewer than (r + 1) plastic hinges, the
bending moment distribution at collapse cannot be fully determined by statics
alone, but this does not give rise to any additional difficulty in determining
deflections at the point of collapse.

Take as an example the frame of Fig. 5.7(2), with V' = W and H = W/6. Col-
lapse now occurs by the beam mechanism of Fig. 5.7(c), which involves only
three plastic hinges and is therefore partial. The bending moments at these
hinges are

M2 = ‘_Mp, M3 =Mp, M4 = —Mp.

Substituting these values in the two equilibrium equations (5.24) and (5.25), it is
found that

W= W,

AM, /1

—Ml +M5 = 2Mp/3. (5.28)
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The separate values of M; and M; can only be found by invoking considerations
other than those of equilibrium,

Three compatibility equations may now be established as in the previous
example, using in turn the same distributions (i)—(iif) which were set out in
Table 5.2. The penultimate line of this table, representing the actual bending
moment distribution, is replaced by

Section

Elk =M M,

Two equations for the determination of the deflections # and v can also be
found by using the distributions (iv) and (v) in Table 5.2. The resulting
equations, assuming that Y, = y5 =0, are

M, — M)l
@ —Mp)! 12EI ») + ¥, +0.5y; = 0. (5.29)
Ms —M,)!
(s_zﬂp)_ +0.50s + s = O. (5.30)
M, +Ms — 4M)1
M, 6SEI p) 4y, +¥s + P = 0. (5.31)
_ 2
My —2M)I7 _ (5.32)
6EI
M,1?
—_— + . = . 5.33
o TOSWs = v (5.33)

Assuming arbitrarily that the last hinge forms at section 3, so that Y3 =0,
Equations (5.29) and (5.30) give

My, — M)l
l,l/2 2ET ’ ( )
(M, — M)l
=0, 535
Vo = 2 (5:39)
and substituting in Equation (5.31), it is found that
M, +Ms = M,. (5.36)

Combining this result with the equilibrium equation (5.28),
M, = M,/6, Ms = 5M,/6.
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Substituting these values in Equations (5.32)—(5.35), and adding terms for
the motion of the mechanism of Fig. 5.7(c) gives
SMyl

V2 = 1o 0

Y3 = 26
Myl

Va = Togr 70

— Mplz
9FI
My

= +19.
v BT 1]

Y, and ¢, must both be negative to conform with the signs of the plastic
hinges at these sections, while 3 must be positive. Inspection shows that the
last hinge to form must be at section 2, with § = 5M,J/12F1, so that at the point
of collapse

(lpl)c =0
SM,!
(‘l/S)c - 6EI
_ Myl
(\b4)c - 3ET
b= M,1?
’ 9ET
) = Ml
12ET °

The feature of this analysis is that the three compatibility equations (5.29)—
(5.31) furnish a relationship between M; and Ms, Equation (5.36), which when
combined with the equilibrium equation (5.28) enables their separate values to
be found. In general, if the number of plastic hinges in the collapse mechanism is
(r + 1—¢q), the r compatibility equations will provide g relationships between
the unknown bending moments, thus enabling the problem to be solved.
Heyman (1961) gives an example of a four-storey frame for which g = 3.

Symonds (1952) compared deflection estimates of this kind with the tests of
Baker and Heyman (1950) on miniature rectangular frames, and found that the
agreement was generally satisfactory. Vickery (1961) used deflection estimates
obtained in this way to study the changes in plastic collapse loads due to defor-
mations, and Onat (1955) has also considered the effect of deformations on the
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immediate post-collapse behaviour. The effects of flexibility of joints and sup-
ports on the deflections developed at the point of collapse were studied using
this technique by Neal (1960), who showed that within certain limits these
deflections are unaffected by such factors. A valuable study of the relationship
between this method of analysis, the determination of upper and lower bounds
on plastic collapse loads, and elastic analysis was made by Munro (1965).
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Examples

1. A uniform, simply supported rectangular beam of span 2/ is of ideal plastic
material and has the bending moment-curvature relation given in Equations (5.1)
and (5.2). It carries a uniformly distributed load W which is increased steadily
from zero. Yield first occurs at mid-span when W= W,, and the central deflec-
tion is then &4 = SKyi2/ 12. Find the central deflection when W= 9W,/8, and
sketch the form of the plastic zones.

2. A uniform, fixed-ended beam of length 37 has flexural rigidity EI and plastic
moment My, It carries a concentrated load 2W at a distance / from one end and
another concentrated load W at a distance / from the other end. Estimate the
deflections corresponding to each load at the point of collapse.

3. For the pinned-base rectangular frame whose dimensions and loading are
shown in Fig. 5.5, collapse occurs when H=1.16M,/l and V= 2.84M,/I.
Estimate the deflection # which corresponds to the load H at the point of
collapse.

4.1In a fixed-base rectangular frame ABCD the columns AB and CD are of height
21 and [ respectively. The base A is lower than the base D by a height /, so that
the beam BC, of length 2/, is horizontal. All members of the frame are uniform
and of the same cross section, with flexural rigidity £I and plastic moment M.
The beam BC carries a central concentrated vertical load W, and a concentrated
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horizontal load W is applied at C in the direction BC. Find the horizontal deflec-
tion of C at the point of collapse.

5. A fixed-base rectangular frame is of height / and span kl. All the members are
of uniform section with flexural rigidity E7 and plastic moment M, It is sub-
jected to a central concentrated vertical load 3W and a concentrated horizontal
load W at the top of one of the columns, Estimate the deflections corresponding
to the two loads at the point of collapse (a) if k¥ = 3, and (b) if k¥ = 2. (Hint:
show that in case (b) a plastic hinge must form at one of the bases, although
collapse occurs by the beam mechanism.)

6. In a two-storey, single-bay rectangular frame ABCDEF the continuous
columns ABC and FED are each of total length 2/, and AB=BC=DE=EF =1,
The upper and lower beams CD and BE each have a span 2/. The frame is rigidly
jointed and rigidly built-in at the bases A and F. All the members are uniform
and have the same flexural rigidity E7 and plastic moment M. The frame carries
concentrated vertical loads W at the centres of the beams CD and BE, and also
concentrated horizontal loads 0.9W at both D and E, acting in the directions CD
and BE. Estimate the horizontal deflection of E at the point of collapse.




6 Factors Affecting the Plastic Moment

6.1 Introduction

The plastic moment My, has so far been assumed to have a constant value for a
given member. This assumption will now be examined. The factors which affect
the plastic moment fall into two categories. In the first place, it will be recalled
that according to the simple theory set out in Chapter 1, My = Z,0,, so that
any factors which affect the yield stress o will equally affect the plastic moment
M,. These factors are discussed in Section 6.2. Second, members in a frame are
generally called upon to resist not only bending moments, but also normal and
shear forces. However, the fully plastic stress distribution which leads to the
derivation of the value Z,0, for the plastic moment only produces a resultant
bending moment, with zero resultant normal and shear forces. More complex
distributions of both normal and shear stresses are therefore required, and the
effect is to reduce the value of the plastic moment below Z,0, . In most practical
cases the reduction is not very large, and methods for making appropnate
allowances are given in Sections 6.3 and 6.4.

Plastic hinges often occur beneath concentrated loads, and the plastic moment
is then modified in addition by contact stresses. Again the effect is usually small;
it can be allowed for on a semi-empirical basis, as discussed in Section 6.5.

6.2 Variations in yield stress

As pointed out in Chapter 1, the yield stress of steel is strongly dependent on
metallurgical factors, namely the chemical composition and heat treatment.
These factors will not be discussed here; rather, the concern is with the ways in
which the yield stress of a given steel is affected by those environmental influences
to which it may be exposed during normal structural use.

The first factor to be considered is the rate of loading. Many investigators
have shown that in tensile tests the yield stress of mild steel is affected by the
strain rate, and a comprehensive literature review has been given by Mainstone
(1975). To give one example, a comprehensive series of tests on three steels was
carried out by Rao, Lohrmann and Tall (1966). In these tests a static yield stress
was determined at effectively zero strain rate, and dynamic yield stresses were
also measured at rates of strain up to about 1.5 x 1073/s. This strain rate is such
that the yield point is reached in about 15, and thus represents a fairly rapid rate
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of loading. It was found that for A.S.T.M. structural steel (A36-63T) the yield
stress was increased by about 13 per cent at the highest strain rate used in the
tests.

Rates of loading normally encountered would not produce such high strain
rates, and so variations in the yield stress due to this effect are likely to be of
smaller order, say 1—2 per cent. However, it should be noted that impact loading
may well result in even higher strain rates and so cause a substantial enhancement
of yield stress.

The lower yield stress of mild steel may be affected by strain-ageing. If a
tensile specimen is subjected to a load which causes some degree of plastic strain,
it is found that after a fairly considerable length of time at ambient temperature
the yield point for a further loading in the same sense is increased (Baird, 1963).
This phenomenon of strain-ageing is accelerated considerably if the temperature
is raised, and this is exploited in laboratory tests. It should not be confused with
the increase in the elastic limit which occurs after the material has entered the
strain-hardening range.

Strain-ageing effects will occur in a framed structure after it has been subjected
to loads which cause the formation of one or more plastic hinges. This might
well happen in practice; there is no reason why some plastic hinges should not
form when, for example, the structure experiences the characteristic loads (see
Section 2.7), even though the structure is not then dangerously near a plastic
collapse state. After a lapse of several months, strain-ageing at these hinge positions
would cause an increase of yield stress, and thus of the plastic moment, of the
order of 10 per cent. However, unless the loading in question was close to the
plastic collapse load, the number of hinge positions concerned would only
constitute a small fraction of the total involved in the collapse mechanism. The
collapse load factor A, would therefore not be greatly affected. Moreover, the
effect would be to increase A, and is therefore on the safe side.

It is difficult to determine the plastic moment accurately by finding the yield
stress 0o from a tensile test and then computing the plastic moment as Z,0,. In
flexure the strain, and therefore the rate of strain, varies across the section in a
roughly linear manner. Since o, depends on the strain rate, there will be some
variation in its value across the section. Moreover, constant rates of strain rarely
occur in either full-scale or model structures. Increments of load cause initially
rapid rates of deflection followed by a progressively slower approach towards
final equilibrium. The specification of the strain rate at which a tensile test
should be conducted to allow the prediction of the plastic moment is therefore
almost purely empirical.

A further problem arises in the case of rolled steel sections, in which the yield
stress varies quite widely between specimens cut from different locations. These
variations, due to differences in amounts of plastic working and in rates of
cooling during the rolling process, may be as large as 60 N/mm?, as pointed out
by Baker (1972). It may be concluded that the most reliable way of determining
the plastic moment of a beam is by means of a bending test.
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6.3 Effect of normal force

The effect on the plastic moment of a normal force will be considered for a
beam whose cross section has two axes of symmetry, with the plane of bending
coinciding with one of these axes, as in Fig. 6.1(a). It will be assumed that the
neutral surface is plane and perpendicular to the plane of bending,.

Suppose that there is a tensile normal force N, and that at full plasticity the
moment, which would have been M, in the absence of normal force, is reduced
to My. The stress distribution will be as shown in Fig. 6.1(b), the neutral axis
being displaced downwards by a distance e from the relevant axis of symmetry.
Initially, e will be presumed to be less than D/2, so that the neutral axis remains
within the cross section. :

y A y 4 o, y A
D Y
2 d
) ]
axis of
B
symmetry ¥ 0 X o o o e u
7 e
D ,
5 neutral :
axis
_ <€ e
Plane of — o,
bending

(a) (b)

Fig. 6.1 Normal force combined with bending

(a) Cross section
(b) Fully plastic stress distribution; e <.D/2
(c) Normal displacements

(c)

The shaded area of the cross section betweeny = * e is subjected to a uniform
tensile stress 0q. This part of the stress distribution therefore has a resultant
which is a normal force through the centroid O of the cross section. The two
unshaded areas are subjected to uniform stresses of the same magnitude o, but
of opposite sign, whose resultant must be a pure couple about the axis of
symmetry Ox. The shaded area of the cross section, denoted by A4, can therefore
be regarded as carrying the normal force NV, so that

N = A,0,. (6.1)

The value of the normal force which would cause full plasticity in the absence of
any bending moment is defined as V,, the plastic thrust or squash load. If the
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total area of the cross section is 4,
Np = Aoy (6.2)
so that
N Ag
= — —. 6.3
"= = (6.3)

The effect of NV is to reduce the plastic moment by the amount (M} ), which
would be contributed by the shaded area in the absence of any normal force,

My = My —Mp)e. (6.4)
Defining (Myp)e = (Zp)e00, and recalling that My, = Z,0,,
4
My = M, [1 _Es)e 6.5)
ZD

This result is also valid for a compressive normal force because of the double
symmetry.

Fig. 6.1(c) shows the normal displacements u at the plastic hinge. A rotation
6 takes place about the neutral axis, which is a distance e below the axis of
symmetry Ox. Thus, at the axis of symmetry there is an axial displacement d
corresponding to &V in addition to the rotation 6 corresponding to My, where

d = ef. (6.6)
The hinge may therefore be termed complex, and the work absorbed W is
W = Mx0 + Nd. 6.7)

The above analysis assumed that e was less than D/2, so that the neutral axis
remained within the cross section. Fig. 6.2(a) shows the distribution of normal
displacements u when e exceeds D/2. These displacements are all tensile, so that
the distribution of normal stress is as shown in Fig. 6.2(b). The normal force is
now the squash load N, and the moment is zero, so that the work absorbed is
simply

W = Npd. (6.8)

However, at the axis of symmetry there is a rotation 6§ in addition to the axial
displacement d corresponding to Ny, and Equation (6.6) still holds. Since e > D/2,
it follows that

2d

6<,

(6.9)

and so despite the fact that the moment is zero the hinge is still complex, with a
rotation 6 of any magnitude consistent with Equation (6.9).
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Fig. 6.2 Normal force combined with bending

(a) Normal displacements; e > D/2
(b) Fully plastic stress distribution

The relations (6.6)—(6.9) should strictly be used in establishing the 'work
equation corresponding to a possible collapse mechanism, as pointed out by
Heyman (1975). However, as will be seen in Section 6.3.3, the effect of normal
force is often negligibly small in practical cases.

Cases in which the cross section has only one axis of symmetry, which
coincides with the plane of bending, were treated by Eickhoff (1954). It is
important to specify the axis about which the resultant moment is measured,
and Eickhoff chose for this purpose the equal area axis.

6.3.1 Rectangular cross section
For the rectangular cross section shown in Fig. 6.3(a),
A = BD, Ae = 2Be
Zy, = %BD?, (Zp)e = Be?,
so that in Equations (6.3) and (6.5),

2e
n=—
D

2

My = M, [1—4;%} = M, (1—n?). (6.10)
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This interaction relation between My /My and »# was first obtained by Girkmann
(1931).
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Fig. 6.3 Particular cases of normal force combined with bending

(a) Rectangular cross section
(b) Fsection bent about major axis

Shakir-Khalil and Tadros (1973) considered rectangular sections subjected to
bending about both axes of symmetry in the presence of axial force. Both solid
and hollow sections were covered, and the results were verified experimentally.

6.3.2 I-section bent about major axis

An I-section may be regarded as consisting of three rectangles, as in Fig. 6.3(b),
without much loss of accuracy. If the neutral axis lies in the web, as shown, the
value of A, is 2et, so that from Equation (6.3)

2et
no= —
A

where A is the total area of the cross section. This relation holds true so long as

A, does not exceed the web area 4, =t (D — 2T), so that

A4
< =2
"
The value of (Z,,), is that appropriate for a rectangular section of breadth ¢ and
depth 2e, so that

, (6.11)
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Zp)e = te*
n2A2
making use of Equation (6.11). Substituting in Equation (6.5),
A2
= My(1 —kn?); =
My (1 —kn?); k 4z,
for
A
< =7, 13
n 1 (6.13)

The plastic section modulus Z,, was shown in Section 1.4, Equation (1.14), to
be

Zy = BT(D—T)+4t (D —2T).

Using this result, it can be shown that

2
1 Ag t
—=1—=)1—=| 6.14
where A is the total flange area 2BT.
If the neutral axis lies in a flange, a similar analysis gives the result
t 2BD
= Myk—-(1—n)|———1+
MN pkB ( n) I: A 1 n]
Ay
for ”n <n <1 (6.15)

Results equivalent to Equations (6.13)—(6.15) were first obtained by
Girkmann (1931). These equations form the basis of the expressions for the
reduction of plastic section modulus which are published in section tables. Tests
on columns under combined thrust and moment were carried out by Beedle,
Ready and Johnston (1950), and good agreement with this theory was obtained.

The interaction relation between My/M, and n for a typical I-section is
shown in Fig. 6.4, which also gives the parabolic interaction relation of Equation
(6.10) for a rectangular section.

6.3.3 Effect of normal force in practical cases

For a beam of I-section bent about the major axis, the reduction of plastic
moment due to normal force is less than 2 per cent when n = 0.1. In single-
storey frames it is found that the value of » is usually less than 0.1, so that the
effect of normal force will be small, unless the frame has some special feature

S

e e e e O

FACTORS AFFECTING THE PLASTIC MOMENT 133

such as crane-bearing columns. However, in multistorey frames an allowance for
the effect of normal force will often have to be made for columns in the lower
storeys, and the effect of normal force on the plastic moment is likely to be of
importance in shallow arches.

1.0

\\\(i)

0.6

my %81 N
M: o (i) \\\‘
0.2 \\

Fig. 6.4 Efj’ect of normal force on plastic moment

(i) Rectangular cross section
(ii) I'section bent about major axis: Ag = 24, t = 0.063B. Neutral axis in flange when n
exceeds 1/3

6.4 Effect of shear force

As pointed out by Drucker (1956), there is no reason to expect that a unique
interaction relation exists between plastic moment and shear force for a given
cross section. The studies which have been made of this problem have usually
been based on a cantilever of length L carrying a concentrated transverse load ¥
at its free end. A cantilever of length 2L carrying a uniformly distributed load
would have the same local situation at the clamped end of a shear force Fand a
bending moment FL. However, the collapse value of F' must in each case be
derived by considering conditions throughout the full length of the cantilever,
and there is no @ priori reason for supposing that the same collapse load would
be found in both cases.

Despite this, it is common practice to present. the results of shear force
analyses as an interaction relation between shear force and plastic moment. This
cannot be strictly justified, but fortunately the effects of shear force are generally
small in practical cases. It is therefore not wholly unreasonable to use an
interaction relation to estimate the reduction of plastic moment due to shear,
even when the loading differs from that which forms the basis of the interaction
relation.

Several analyses of the effect of shear force have been concerned with stress
distributions or plastic deformations at the critical section only, no regard being
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paid to conditions in the remainder of the cantilever, Such local analyses are
unreliable, since as pointed out by Drucker (1956) neither a lower nor an upper
bound is obtained.

6.4.1 Rectangular cross section

Consider a cantilever of rectangular cross section, breadth B and depth D, which
is subjected to an end shear load F, as shown in Fig. 6.5. The length of the
cantilever is L, so that the bending moment at the clamped end is FL. It is
required to determine the value My of this moment at which full plasticity
occurs, and in particular to compare its value with the plastic moment M, =
1BD?¢, in the absence of shear,

A simple lower bound approach will now be outlined. Fig. 6.5 depicts a
situation in which the cantilever is wholly elastic to the left of section AA. At
this section the longitudinal normal stress o, just attains the yield value o4 in
the outermost fibres. To the right of section AA yield zones are assumed to form
in accordance with the simple theory of flexure given in Section 1.3.1, in which

the effects of shear were not considered. In these yield zones the state of stress is
0y = toy, 0y =0, 7 =0,

the notation for stresses being as shown in the figure. Justification for this
assumption was provided by Prager and Hodge (1951) and also by Horne (1951).
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Fig. 6.5 Plastic zones in cantilever of rectangular cross section

Since 7 is assumed to be zero in the yield zones, the shear force F must be
carried entirely by shear stresses in the elastic core of total depth 2z. As z

.
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decreases the magnitudes of these shear stresses must increase, so that at some
section BB yield must occur within the core. The analysis which follows is aimed
at determining statically admissible stress distributions throughout the beam
which are also safe, so that the yield criterion is not violated, but is just met at
the critical section BB. .

The von Mises yield criterion will be used. For the condition of plane stress
which is assumed, this takes the form

¢ = [02 — o0, + 02 +372]1Y2 < g,. (6.16)
The yield stress in pure shear is 04 /+/3 according to this criterion.
The two equations of equilibrium are

9oy | OT
—= 4+ — = 0. 6.17
ox Oy ( )
dgy | OT
— +— = 0. 6.18
ay ox (6.18)

In the elastic portion of the beam, x < a, gy is assumed to be zero, while o,
varies linearly across the section in accordance with the simple theory of elastic
flexure, so that

12 Fxy
BD?

(6.19)

Oy =

(6.20)
The corresponding solution of Equations (6.17) and (6.18), bearing in mind that

r=0when y =+D/2 is
_ 3 (2
2BD D] |

At section AA, where x = @, 0, = 0, when y = D/2, so that from Equation
6.19)

o, = 0.

(6.21)

_ 6Fu
% = ppv

Fa = M, = BD%g,. (6.22)

The distributions of the stresses o, and 7 across section AA are shown in Fig.
6.6. It will be assumed in what follows that when x < a, 7 nowhere exceeds the
yield stress in pure shear, go/+/3, so that from Equation (6.21)

3F Og
o< 2
2BD /3
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2

33

F < ==~ BDa,. (6.23)

o,
D
2 3F
2BD
0 = o T
2 A
2
o,
(a) (b)

Fig. 6.6 Stress distributions in cantilever of rectangular cross section

(a) Distribution of oy at section AA
(b) Distribution of r at section AA

If the plastic shear force F}, is defined as the shear force corresponding to the
development of the yield stress in pure shear over the entire cross section,

1
Fp = %BDOO s (624)
so that condition (6.23) becomes
F o2
= — < —, 6.25
=<5 (6.25)

In the limiting case when condition (6.23) becomes an equality, the situation
at section AA is

L ()
TR D) |

and substituting in the yield criterion (6.16)

S

%
.
|
.
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It is readily shown that ¢ < g, for —D/2 <y < D/2, so that this distribution of
stress is safe.

Turning now to the elastic-plastic portion of the beam, x > q, it is assumed
that in the elastic core g, still varies linearly with y, so that

(6.26)

In the plastic zones o, = *0¢, while 7 and o, are both zero. It follows from the
simple theory of elastic-plastic flexure presented in Section 1.3.1, Equation
(1.2), that the bending moment M is given by

D? 1
M=Fx = [2—522} 0o, 627
so that
iz _ 3F
dx  2Bzog,

Using this result and Equation (6.26), the solution of the equilibrium
Equations (6.17) and (6.18) is

el
= aiall] -]

The distributions of stress defined by Equations (6.26), (6.28) and (6.29) are
statically admissible. It is now assumed that a critical condition is reached at
section BB, where z = z,, due to 7 attaining the value oy//3 at y = 0, so that

3F_ﬂ

(6.28)

(6.29)

= . 6.30
4Bz, /3 (6-30)
The distributions of stress at this section then become
Ox = Og|—
Zo
o y ?
= Joy_ |
2
2 y y
= —— =} 11—]= .

These distributions are shown in Fig. 6.7. Substituting in the yield criterion,
Equation (6.16),
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o= [es( -]

Within the range —z, <y < z,, ¢ is found to have a maximum value 1.0030,
when y = $0.34z,, so that the yield criterion is just not met. However, since the
extent of the violation is only a maximum of 0.3 per cent, the stress distributions
will be accepted as safe as well as being statically admissible. It is readily verified
that BB is indeed the most critical section, as is to be expected.

y ‘ o y A
z, o,
2
- /"
o) 0;,0, o T
z,
. A
l a,
(a) (b)

Fig. 6.7 Stress distributions in cantilever of rectangular cross section

(a) Distributions of o4 and oy at section BB
(b) Distribution of 7 at section BB

The value of My is found from Equation (6.27), with z having the value z,
defined by Equation (6.30). Using Equation (6.24),

Mp = M, [1—0.75f2]. 6.32)

This is an interaction relation between Mp/M, and f. It is subject to the
limitation set by condition (6.25), namely that f cannot exceed 2/3. When f has
this value, Equation (6.32) shows that Mp = 2M,/3 = My, and from Equation
(6.30) it is found that z, = D/f2. This means that the sections AA and BB shown
in Fig. 6.5 coincide, and the length of the beam is then a, which is found from
Equation (6.22) to be D +/3/4 = 0.433D. The condition f < 2/3 is therefore
equivalent to L/D > 0.433. Since the plastic theory is scarcely applicable to such
short beams, this condition is not restrictive,

A more detailed study was made by Horne (1951), in which the growth of
central yield zones in the neighbourhood of section BB was considered. This
gave results similar in form to those just obtained, differing only in the values of
the numerical constants, as follows:

.
-
.
.
%
.
i
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My = M, [1—044f2]; [ < 0.79. (6.33)

This can be compared with the recommendation of Drucker (1956), who
developed alower bound solution based on more hypothetical stress distributions,
and also discussed various upper bound approaches. The interaction relation
proposed by Drucker is

Mp =M, 1—f%; f<1. (6.34)

Green (1954) gave upper bound solutions, based on a consideration of
deformations, for the cases of plane stress and plane strain. In this paper the
influence of the nature of the support conditions was also discussed. The most
notable feature of Green’s solutions is that they show an increase in the plastic
moment with shear force for small values of f. Onat and Shield (1954) have also
given an upper bound solution for the plane strain problem.

6.4.2 I-section bent about major axis

For an I-section bent about its major axis it will be assumed that the shear force
is carried solely by the web. Thus if the area of the web is A4, , the plastic shear
force Fy, is given by

F, = \%Awao (6.35)
if the von Mises yield criterion is used. (If the Tresca yield criterion is used, the
factor 1/+/3 in Equation (6.35) is replaced by 1/2.) The upper bound solution of
Leth (1954) showed that F can only exceed F, for beams whose length/depth
ratio is so small that the concept of beam action is meaningless, which verifies
this assumption.

The plastic moment of an I-section bent about its major axis in the absence
of shear was evaluated in Section 1.4, Assuming the section to consist of a pair
of flanges, each of breadth B and thickness T, and a web of depth (D — 27 and
thickness #, it was shown, Equation (1.14), that

M, = [BTO—T)+%4t (D —2T)*] op.
Neglecting T in comparison with D, this simplifies to
M, = [BDT +%tD*] o,

iD [24;+ Ay] o,. (6.36)

In this equation the first term represents the contribution of the flanges, of total
area A¢, and the second term the contribution of the web, of area 4, .

The simplest approach to the problem is to regard the flange moment as
unaffected by shear and to modify the web moment in the same way as for a
rectangular section. This method was adopted by Horne (1951); using his result

I
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as expressed in Equation (6.33) gives
Myp = 3DAsog + 3DAywoo(1 —0.44f?)

‘ A
= —044 | =2\ 72 < 0.79.
o [1=0as (e ) s

Leth (1954) showed that this procedure gives rise to stresses in the neighbour-
hood of the flange-web junction which violate the yield criterion, and gave
suitable modifications to the theory. However, in both these analyses the
conditions of equilibrium at the flange-web junction were not met, so that the
solutions were not true lower bounds. A lower bound solution in which all the
conditions of equilibrium are met and the yield criterion is not violated has been
given by Neal (1961a). The results cannot be expressed in explicit form, but the
interaction relation for a section with 4 = 34, is shown in Fig. 6.8.

(6.37)

1.00
x
0.95 \\
\.
(iii) —
Mr 0.00
Mo
0.-85
0:-80
(o} 0.2 04 0:-6 0-8 1.0
t=F
Fp
Fig. 6.8 Effect of shear force on plastic moment of I-section bent about major
axis: As = 34y
(i) Lower bound (Neal)
(ii) Upper bound (Green)

(iii) Empirical relation (Heyman and Dutton)

Green (1954) applied his upper bound solution for a beam of rectangular
cross section in plane stress to the case of a cantilever of I-section, assuming that
the flange moment is unaffected by shear. The interaction relation for the case
Ag = 34, is also shown in Fig. 6.8.

It will be seen that the difference between the upper and lower bound
solutions is never very large. An empirical relation close to these two bounds will
therefore suffice for practical purposes. Such a relation was suggested by Heyman
and Dutton (1954). It was derived from a purely local analysis of conditions at
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the critical section, so that its justification depends entirely upon its good
agreement with the bounds illustrated in Fig. 6.8. The relation is

A
Mz = M, [1—(ﬁ;)(1_(1 —fz)m)}; f<1. (638

It is suggested that this equation be used in practice. However, further work
in this field is required. Progress is most likely to be made by the development of
true upper and lower bound solutions. These are needed especially for the
investigation of different loading arrangements to see whether or not it is really
satisfactory to use, for a given cross section, a unique interaction relation such as
Equation (6.38). Reference should be made to an upper bound analysis of a
panel of a plate girder, in which a tension field develops in the web, described by
Calladine (1973).

Comparison with experimental results is difficult, because until F approaches
F,, the effect of shear is quite small for I-sections, whereas when F is close to
F,, there is often no clearly defined collapse load. In their tests on model simply
supported beams of I-section, Baker and Roderick (1940) and Hendry (1949,
1950) found this difficulty. However, in testing simply supported model plate
girders subjected to central concentrated loads, Heyman and Dutton (1954)
observed sharply defined collapse loads even when F was close to Fy,, and their
results agreed well with Equation (6.38). Further tests on plate girders by
Longbottom and Heyman (1956), on model cantilevers of I-section by Green
and Hundy (1957), and on a full-scale Vierendeel girder by Bull (1955), have
provided additional confirmation of the usefulness of this empirical relation.

6.4.3 Combined effect of shear and axial forces

The combined effect of shear and axial forces acting simultaneously has not so
far been discussed. However, only rarely will the shear and axial forces at a
plastic hinge both be of sufficient magnitude to have an appreciable effect on
the plastic moment. The problem was first discussed by Green (1954), who
developed an upper bound solution for a beam of rectangular section in plane
strain. Lower bound solutions were developed by Neal (1961b, 1961c) for
cantilevers of rectangular and I-section, and Kloppel and Yamada (1958) gave a
lower bound type of analysis for an I-section which is essentially a local criterion.
Horne (1958) extended Heyman and Dutton’s local analysis for an I-section to
include the effect of axial force, and Kusuda and Thiirlimann (1958) have also
suggested similar approaches.

6.5 Contact stresses beneath loads

Model tests are often carried out on simply supported beams of rectangular
cross section, subjected to either a central concentrated load or symmetrical
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two-point loading. For beams of similar section and material, the plastic moment
is usually observed to be somewhat higher when central concentrated loading is
imposed. The reason for this is that with symmetrical two-point loading the
plastic moment is attained in the central length of the beam between the loads,
which is in pure bending, so that the stresses in this region are only required to
equilibrate a pure couple. This was the assumption made in the simple theory of
Section 1.4, which led to the value Z,0, for the plastic moment. However, with
central concentrated loading the plastic moment is only attained beneath the
load, where the stresses must in addition balance shear forces and also the contact
stresses due to the load. The effect is, paradoxically, to increase the collapse load
and hence the value of the plastic moment derived from such a test.

An approximate elastic solution for the stresses in a simply supported
rectangular beam subjected to a central concentrated load was developed by
Stokes and published in a paper by Carus Wilson (1891). This solution indicates
that the local effect due to the concentrated load consists principally of two
stress components. The first of these is the compressive stress acting on planes
parallel to the axis of the beam which is obviously required to support the load.
The other is a longitudinal normal stress which modifies the linear distribution
across the section obtained by the ordinary Bernoulli-Euler theory of elastic
flexure. The effect of this latter stress is to multiply the ordinary bending stresses
by a factor (1 — kD/L), where D and L are the depth and length of the beam,
respectively. k is a positive factor which varies across the section and is small
except within a distance of the order of D on either side of the load, where it is
of the order of unity.

This elastic solution supports the view of Roderick and Phillipps (1949) that
the contact stresses tend to annul the ordinary bending stresses near the load,
even when yield has occurred. Since the elastic solution suggests that the
disturbance due to a central concentrated load is confined to a total length of
about D, Roderick and Phillipps suggested that collapse will occur when the
bending moment reaches the value Z,0, at a distance D/2 on either side of the
load. The central bending moment at collapse is then Z,00L/(L — D), so that
the apparent plastic moment My, is approximately

D
M;, = ZpCfo (1 +Z)

Roderick and Phillipps carried out tests on a series of beams of rectangular
cross section which confirmed this semi-empirical result. Further evidence in
support was furnished by Heyman (1952), who used a relaxation method to
determine the stress distribution in the neighbourhood of a central concentrated
load on a beam of rectangular cross section at the point of collapse. The photo-
elastic tests of Baes (1948) on beams of rectangular section and of Hendry (1949)
on beams of I-section, also indicated that Equation (6.39) may be expected to
be reasonably correct in many cases. For beams of I-section, the equation is

(6.39)
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clearly not applicable if bearing stiffeners are provided beneath the concentrated
loads.
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Examples

1. An Isection has the following dimensions (see Fig. 1.9):

flange width B = 178 mm
flange thickness T = 12.8mm
total depth D = 406 mm
web thickness t = 7.8mm.

Find the plastic moment for bending about the minor axis in the absence of
axial force and also when there is an axial thrust of 1200kN, assuming a yield
stress of 250 N/mm?.
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2. A tee section consists of a flange of width a and thickness 0.24, and a web of
depth @ and thickness 0.2a, the total depth of the section thus being 1.24. For
bending about an axis parallel to the flange, causing flexure in the plane of the
web, determine the plastic moment. Find the interaction relation between plastic
moment and axial force, referring the moment to the equal area axis.

3. A thin-walled tube of circular cross section carries an axial force NV and a
pending moment My about a diametral axis. Find the interaction relation
between My and N.

4. The frame whose dimensions and loading were specified in Fig. 4.7(a) was
shown in Section 4.3.4 to collapse at a load factor of 1.342 if the plastic
moments of the members had the trial values given in the figure.

If the load factor is to be 1.5, show that the sections of members CE and DF
can be a 152 x 152 @ 23 UC, assuming a lower yield stress of 250 N/mm?, when
due allowance is made for the axial thrust in these members. For this section,
the following properties may be assumed:

A =298cm?, Z, = 1843(1—1972n%), n < 0.283.

5. A fixed-ended beam is of length 4.5 m and carries a concentrated load W at a
position 1.5 m from one end. The section is a 305 x 165 @ 54 UB whose relevant
properties are:

major axis ~ Z, = 843cm’

web area A, = 22cm?

flange area A4y = 46cm?.

Assuming a yield stress of 250 N/mm?, find the value of W which would cause
plastic collapse (a) neglecting the effect of shear on the plastic moment, and (b)
taking shear into account. Assume the von Mises yield criterion and neglect the
effect of contact stresses beneath the load.



7  Minimum Weight Design

7.1 Introduction

In the methods of plastic design described in Chapter 4 it was assumed that the
characteristic loads acting on a frame were given, and that the problem was to
find the plastic moments of the members so that the frame would just collapse if
these loads were all multiplied by a specified load factor, say, A*. The procedure
was to assume trial values for the plastic moments of all the members, and to
determine the corresponding load factor A, against collapse. The trial values of
all the plastic moments were then multiplied by A*/A., thereby producing a
design in which the load factor against plastic collapse was A™.

This procedure involved at the outset the arbitrary selection of the relative
values of the plastic moments of the members. A different selection of these
relative values would result in a different design Clearly for a given frame and
loading there will be a large number of possible designs, and it is relevant to
consider which of these represents the best which can be achieved.

The design which involves the use of the least weight of material is one kind
of optimum, but to assert that minimum weight is the only important criterion
in design would be to disregard the economic and other factors which must
always be considered. However, a discussion of those factors will not be entered
into here, and this chapter is concerned solely with the problem of designing for
minimum structural weight.

7.2 Assumptions

It will be assumed throughout that the dimensions of the frame and the factored
values of the characteristic loads are prescribed. Furthermore, each frame
considered will be assumed to be composed of uniform prismatic members. The
normal assumptions for the cdlculation of plastic collapse loads are made, and
the plastic moments of the members are taken to be unaffected by axial and
shear forces.

A relationship between the weight w per unit length of a member and its
plastic moment M), is required. For a series of geometrically similar cross sections,
the cross-sectional area and thus w is proportional to d?, where d is any typical
dimension such as the total depth of the section, and the plastic section modulus
Z, and thus M, is proportional to @°. It follows that for such a series of sections

mms‘mmg‘
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w & Mp?? . For Isections it is found that the empirical relation
W e M0 (7.1)

agrees closely with tabulated values.
For a range of sections appropriate to a specific problem, Equation (7.1) may
be approximated to by the linear relationship

w = a+bM, (7.2)

where @ and b are constants. The error involved in this approximation is small,
and it will be seen later that its use may lead to the correct minimum weight
design.

If it is further assumed that an infinite range of sections is available, the
linearization implied by Equation (7.2) permits the formulation of a simple
expression for the total weight of a structure. If L is the length of any member,
the total structural weight X is given by

X=YwL=a)L+b) ML,

where the summations cover all the members.

The term ¢2L is a constant for given structural dimensions, and so X is
minimized when ZM,L is minimized. This texm is called the weight function,
and is denoted by x, so that

x =Y M,L. (7.3)

The minimum weight problem is thus to design a frame so that the weight func-
tion x, defined by Equation (7.3), is a minimum.

7.3 Geometrical analogue and Foulkes’ theorem
7.3.1 Geometrical analogue: rectangular frame

The nature of the minimum weight design problem was clarified by the work of
Foulkes (1953, 1954), using a geometrical analogue. His treatment will be
followed here with only minor variations. Consider as an illustrative example
the rectangular frame whose dimensions and factored loads, in arbitrary units,
are shown in Fig. 7.1. The beam is to have a plastic moment §, , and the columns
are each to have a plastic moment 3, . The weight function as defined in Equation
(7.3)is

x = 38; +26,. (7.4)

For this type of frame and loading there are two independent mechanisms,
the beam and sway mechanisms, and these can be combined to form a third
mechanism. Since it is not known at the outset whether 8, is less than or greater
than B,, each of these mechanisms can take two forms, any hinge occurring at a
joint between the beam and a column appearing either in the beam or the
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column. The resulting six possible mechanisms of collapse are shown in Fig. 7.1
together with the corresponding work equations, with 6 cancelled on each side.

(f) 4F2 =1;P1>P2

(@) 2py+2p,=1:p15 B2
Fig. 7.1 Rectangular frame: mechanisms and work equations

These work equations may be represented as straight lines on a diagram in
which §; and B, are rectangular coordinate variables, as in Fig. 7.2. For each of
the three types of mechanism there are two lines, representing the work
equations for the cases 8; < f, and $; > B,. Thus for the sway mechanism the
lines (¢) and (f) represent these two cases, the lines intersecting at the point N
where 8; =8, . The other work equations are shown similarly as the lines (a), (b),
(c) and (d), the lettering corresponding to that of Fig. 7.1.
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Fig. 7.2 Geometrical analogue for frame of Fig. 7.1

A simple deduction can be made from this figure using the kinematic theorem.
Consider, for example, a particular case §; =0.75 §3,. This condition is represented
by: a straight line through the origin of slope 0.75, which intersects the three
work equation lines (e), (c) and (a). The intersection with (a) at the point D is
farthest from the origin and thus represents the highest values for the plastic
moments. By the kinematic theorem this point represents the required values of
B; and B, if 8; = 0.75 B,. Considering all possible ratios of 8, to 8, in this way,
it follows that all possible conditions of collapse are represented by the line
segments ABCME shown shaded in the figure. Points farther from the origin
than these line segments represent designs which would not collapse under the
given loads; the region so defined is termed the permissible region. Points nearer
to the origin than the boundary of the permissible region represent structures

_ which could not support the factored loads.

The minimum weight problem therefore reduces to locating the point on the
boundary of the permissible region for which the weight function x = 38, + 28,
i§ a minimum, Any straight line of the form

38, + 28, = constant

represents designs of constant weight, the perpendicular distance from the origin
to the line being proportional to the weight function x. Hence the minimum
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weight design is found by determining where such a line, of slope —2/3, just
touches the boundary of the permissible region. The appropriate fangent weight
line is shown broken in Fig. 7.2, touching the boundary of the permissible region
at the minimum weight design point M. The coordinates of M are

B, = 0.75, B, = 0.75

and these values of the plastic moments constitute the minimum weight design.
If the relation (7.1) is used to determine the structural weight, lines of
constant weight are of the form

369:¢ +2p%-¢ = constant.

The corresponding tangent weight line is shown in Fig. 7.2, and it will be seen
that the minimum weight design still corresponds to the point M.

The boundary of the permissible region is convex towards the origin, so that
when a straight line of constant weight touches this boundary at one point it is
impossible for the line to pass into the permissible region anywhere along its
length. This property of convexity is always possessed by the boundary of the
permissible region. A design can therefore be established as being of minimum
weight by making only local tests to show that the weight is increased by any
small changes in the ratios of the plastic moments. However, Prager (1956) has
pointed out that this is not always true if a power law weight relationship such
as Equation (7.1) is used.

For frames whose design is specified by the values of only two plastic
moments, the minimum weight design can always be determined by a graphical
procedure of the kind embodied in Fig. 7.2. However, when there are more than
two parameters involved, a graphical procedure is impracticable. To enable such
cases to be dealt with, and to enable a local test to be used to check a minimum
weight design, a theorem due to Foulkes (1954) may be used.

15(¢+0)

Fig. 7.3 Mechanism with two degrees of freedom

7.3.2 Foulkes’ theorem

Figure 7.2 will be used to introduce this theorem. At the minimum weight point
M, the lines corresponding to mechanisms (a) and (b) intersect to form a corner
of the boundary of the permissible region. This implies that the minimum weight

A
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structure can fail by either of these two mechanisms. These are seen from Fig. 7.1
to be the two possible beam mechanisms, with the hinges at the ends of the
beam forming in either the beam, for 8, < f8,, or the columns, for 8, = 3,.
When B8; = B,, a collapse mechanism with two degrees of freedom can therefore
occur, as shown in Fig. 7.3. This is formed by the addition of the mechanisms of
Fig. 7.1(a) and (b), replacing 6 by ¢ in (a) and by ¢ in (b). The work equation
for this mechanism is

3Wt¢) = 4y +2¢) By +2¢P,;

7.5
Yy =20 and ¢ = 0. (7.3)

If B; = B, this equation gives §; =, = 0.75, as obtained previously.

Equation (7.5) is valid within the limits stated, namely ¢ > 0 and ¢ > 0,
these conditions being required to produce hogging moments at each end of the
beam. For any given positive ratio of ¥ to ¢ it represents a straight line in Fig.
7.2. When ¢ = 0, the line becomes line (a), corresponding to mechanism (a) of
Fig. 7.1; and when ¢ = 0, it becomes line (b), corresponding to mechanism (b).
The slope of the tangent weight line lies between the slopes of these two
mechanism lines (a) and (b), and so there must exist a ratio of ¢ to ¢ for which
Equation (7.5) becomes a line of the same slope as the tangent weight line. From
Equation (7 4) the tangent weight line is of the form

36, + 23, = constant.

For Equation (7.5) to represent a line of the same slope it follows by comparing
coefficients of §; and 3, that

4y +2¢ 29
32

from which ¢ = 4. With this value of ¢, the work equation (7.5) becomes
15¢ = (128, +8B,) ¥ (7.6)

and this represents a line parallel to the lines of constant weight.

The particular beam mechanism obtained by choosing ¢ = 4 is said to be
weight compatible, since in its work equation (7.6) the coefficient of each
plastic moment bears the same ratio to the corresponding coefficient in the
weight function. A general definition of weight compatibility is as follows: If a
frame has # different plastic moments (8y, $,, . . . , Bn), the work equation for
any mechanism will be of the form

Work done = [¢y8; +¢38, + ... +enBal 0,

where ¢, is the total hinge rotation in all the members whose plastic moment is

Be.
The weight function will be
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x = [Lify + LBy + ... +LyBal,

where L, is the total length of all the members whose plastic moment is 8,. The
mechanism is weight compatible if

¢ C2

Ly I,

cn
Ly

The minimum weight design in this particular case is distinguished by two
features. In the first place, there exists a weight compatible mechanism, as has
just been seen. Second, the minimum weight design point M lies on the boundary
of the permissible region, and this implies that a safe and statically admissible
distribution of bending moment throughout the structure can be found. These
two features exemplify the theorem due to Foulkes (1954):

Foulkes’ theorem. If for any design of a frame a weight-compatible mechanism
can be formulated, and a correspondingsafe and statically admissible distribution
of bending moment throughout the frame can be found, the design will be of
minimum weight.

This wording covers the possibility of there being a range of designs all of
which have the same minimum weight. Reference may be made to the original
paper by Foulkes for other minimum weight theorems, especially those which
give upper and lower bounds on the minimum weight.

It would be incorrect to interpret Foulkes’ theorem as implying that all
minimum weight designs are weight compatible, as emphasised by Smith (1974).
The frame of Fig. 7.4, taken directly from Smith’s work, illustrates the point.
The two columns, of unequal length, are presumed to have different plastic
moments, and the beam has a plastic moment equal to that of the shorter
column. There are five possible collapse mechanisms, as shown, and their work
equations are represented in Fig. 7.5.

The minimum weight design point M in this instance is

Br =0, B, = 050,

and it will be seen that the condition of weight compatibility is not met by the
minimum weight design.

7.4 Methods of solution

The problem of design for minimum weight is amenable to the techniques of
linear programming. Thus for the frame of Fig. 7.1 the equations of equilibrium
are

_Ml +M2 _M4 +M5.
—M2 +2M3 '_M4.

(7.7)
(7.8)

w
f
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(b) B1+3B,=1:p1< B2
-268

+0

(e) 2, +4p,=2:B1< B>

(d) p1+5B2=2;B12 B2

Fig. 7.4 Frame with columns of different lengths: mechanisms and work equations

Since no bending moment can exceed the plastic moment in magnitude

—B <M <8 (= 2,3,4). 7.9)
—f, S M; < B, G =1,2,4,95). (7.10)

The problem is therefore to minimize the weight function
x = 36; +28, (7.4
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subject to the constraints imposed by Equations (7.7) and (7.8) and the
inequalities (7.9) and (7.10).

125
1.00
permissible
region
075
0:50
0.25}-
weight *
line
o | M /
0 025 0-50 075

Fig. 7.5 Geometrical analogue for frame of Fig. 7.4

This formulation of the problem was used by Heyman (1951, 1952), who
gave the first systematic method of solution. Trial and error procedures were
suggested by both Foulkes (1953) and Heyman (1953). These depended upon
identifying the minimum weight design as satisfying the conditions of Foulkes’
theorem, but as pointed out above a minimum weight design is not necessarily
weight compatible. It is suggested that recourse should be had to a computer
program for any problem beyond the scope of the graphical procedure described
in Section 7.3.1. ,

Livesley (1956) was the first to devise a program for the minimum weight
design of frames, and Heyman and Prager (1958) described a technique which
can be used manually and which is also suitable for programming on a computer.
A comprehensive discussion of the use of linear programming in this context has
been given by Maier, Srinivasan and Save (1972), and primal-dual programs have
been discussed by Munro (1973). '

The minimum weight design problem discussed in this chapter was based on
the following assumptions:

e R
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(a) the frame is composed of uniform prismatic members;

(b) an infinite range of sections is available;

(c) plastic collapse should occur under a single specified combination of
factored loads;

(d) the linearized weight function is to be minimized.

Many studies have been made of minimum weight problems with different
formulations. For example, if assumption (a) is not made, so that varying sections
may be used, further reductions in weight are possible. Horne (1952) considered
the problem of a fixed-ended beam with additional flange plates (see Section
3.5.4). The use of tapered members was investigated by Vickery (1962), and
Heyman (1959, 1960) has considered the absolute minimum weight which
would result from the use of continuously varying sections.

Toakley (1968) discussed the problem when assumption (b) is discarded, and
due account is taken of the fact that in practice only a finite range of sections is
available. Another variant of practical significance occurs when assumption (c) is
altered to cover the case of a frame which must be capable of withstanding a
single application of two or more combinations of factored loads. This problem
was considered by Heyman (1951, 1952), Foulkes (1955) and also by Livesley
(1959). It should not be confused with the case of variable repeated loading
which is dealt with in Chapter 8.
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Examples

1. A beam ABC rests on three simple supports, A, Band C, where AB =BC =3m.
Concentrated vertical loads 60kN and 50kN are applied 1 m from A and 1.5m
from C, respectively. If the plastic moments of the spans AB and BC are 8 and
B, , respectively, find the values of §; and B, in the minimum weight design.

2. A fixed-base rectangular frame ABCD has columns AB and DC of equal height
4m and a horizontal beam BC of length 8 m. There is a concentrated vertical
load 40kN at the centre of the beam and a concentrated horizontal load 30 kN
at C in the direction BC. If the plastic moment of the beam is f, , and the plastic
moments of the columns are each to be equal to §,, find the minimum weight
design.

3. If the frame of example 2 is freely pinned to a rigid base at D, while all other
conditions remain unchanged, find the values of §; and f, in the minimum
weight design.

4.If in the frame of example 2 the columns AB and DC may have different
plastic moments 8, and 3, respectively, while the beam BC has a plastic moment
B, show that the minimum weight design is §; = f3 = 55,8, = 5.

5. The frame of Fig. 4.1(a) was analysed in Section 4.2 on the assumption that
all the members had the same plastic moment. Show that if the two rafters are
required to have the same plastic moment §; , and the two columns are required
to have the same plastic moment §,, the minimum weight design is achieved
when §; = ;.
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6. In the frame of Fig. 4.7(a), the plastic moments of the members are to be:

CA, AB, BD: 8;
CE, DF 26,
CD B,.

This frame was analysed in Section 4.3.4 assuming that 8, = 38, . Show that this
analysis leads to the minimum weight design.

7. A beam ABCD rests on four simple supports A, B, C and D, where AB =3 m,
BC =4m, CD = 5m. Concentrated vertical loads 40, 30 and 30kN are applied
at the centres of the spans AB, BC and CD, respectively, and the corresponding
plastic moments in these spans are 8;, f, and 3. Show that there is a range of
designs all of which are of minimum weight, given by 15<§, <20,
By =30—0.58,,8; =37.5—0.58,.



8 Variable Repeated Loading

8.1 Introduction

The loading on a structure may vary considerably during its lifetime. For example,
apart from dead-loading a building frame will experience snow loads on the roof
and wind loads on each face. The magnitudes of these loads at any particular
instant cannot be foreseen, although their characteristic values will be known, so
that the sequence of loading is unpredictable. This type of loading is termed
variable repeated loading.

It is possible, as first recognized by Griining (1926) and Kazinczy (1931), that
under variable repeated loading a frame may fail due to the eventual development
of excessive plastic flow, even though no single load combination is sufficiently
severe to cause failure by plastic collapse. To aid discussion, suppose that a
frame is subjected to loads NPy, NP2, . . ., APy, . . . , APy, each load being
applied at a given point in a specified direction. X is a load factor applicable to
every load. The value of any load AP, can vary between limits (A\Py***, APminy
independently of the variations which may occur in the values of the other
loads. The limits (P™2%, P™™) are presumed to be prescribed (characteristic)
values.

There are two ways in which failure can occur due to variable repeated
loading. If the loads on a frame are alternating in character, one or more members
may be bent back and forth repeatedly, so that yield occurs in its fibres
alternately in tension and compression. This behaviour, termed alfernating
plasticity, may eventually lead to failure by low endurance fatigue. There will be
an alternating plasticity load factor A, above which alternating plasticity will
occur. ,

Another type of failure may occur if critical combinations of loads follow
one another in fairly definite cycles. If X exceeds a certain value A*, increments
of plastic hinge rotation take place at certain cross sections during each cycle of
loading. These increments are in the same sense in every cycle. If A, while
exceeding A*, is less than a higher critical value A;, the increments of rotation
become progressively smaller as the number of cycles increases. Eventually, a
condition is reached in which there are no further changes in the hinge rotations,
and during subsequent cycles there are only elastic changes of bending moment
in the frame. When this happens, the frame is said to have shaken down. However,
if \ exceeds Ay, the frame never shakes down, and finite rotations occur at the
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hinges during each cycle. Thus if a sufficient number of cycles of loading occurs,
unacceptably large hinge rotations and therefore deflections will be built up. The
frame would then be said to have failed by incremental collapse. The critical
load factor A; above which incremental collapse can occur is termed the
incremental collapse load factor.

The main objective of this chapter is to discuss methods for the determination
of Ar, since the calculation of A, is found to be a simple matter. However, an
essential preliminary is to develop an understanding of the behaviour of frames
under cyclic loading when \ exceeds A*, Section 8.2 is therefore devoted to a
description of the response of a particular frame to this type of loading. This is
followed by a discussion in Section 8.3 of the theorems concerning the values of
A and A,. It appears that a close parallel exists between these theorems and
those which concern the collapse load factor A, for a particular load combination.
It follows that methods for the calculation of A; can be developed which are
analogous to those given in Chapter 4 for the calculation of A,. One such
method is described in Section 8.4. In conclusion, a discussion is given in Section
8.5 of the significance of the phenomena of alternating plasticity and incremental
collapse in relation to plastic design.

8.2 Step-by-step calculations

The results of some illustrative step-by-step calculations for the fixed-base
rectangular frame shown in Fig. 8.1 will now be presented. Each member of this
frame is presumed to have the same plastic moment *M,, and to behave elastically,
with flexural rigidity £7, when the magnitude of the bending moment is less than
M,. This frame was analysed in Section 2.5 under proportional loading. The
same step-by-step technique is applicable for the analysis of cyclic loading, and
so details of the calculations need not be given.

The bending moments which occur if the response of the frame is wholly
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Fig. 8.1 Frame and loading
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elastic, which are denoted by the symbol .#, will be needed in what follows.
They may be shown to be:

A = +01VI—03125H]
My = —02VI+0.1875Hl
My = +03VI 8.1)
Ay = —02VI—0.1875Hl
M5 = +01VI+ 031254l
8.2.1 Alternating plasticity

The first loading cycle to be considered is shown in Fig. 8.2. The sequence of
loading is:

V=WH=W orsimply (W,W)

V=0 H=—W ©,—W)
V=0H=0 (0,0).

This cycle causes alternating plasticity if W exceeds a critical value W,.

¢w
R ot g
w W

/4 T 7 7 Y

Fig. 8.2 Cycle of loading which may cause alternating plasticity

The results of calculations for W = 2.85 M, /I are summarized in Table 8.1.
When the load combination (W, W) is first applied,

Table 8.1 Alternating plasticity: W = 2.85 My /1

ioooH My My My My Ms GBI gsEI
My My, M, M, M, M, M, Myl Myl
2.85 2.85 —0.823 0.028 0.939 —1 1 —0.158 0.103
0 0 —0.217 0.063 0.084 0.104 —0.176 —0.158 0.103
0 —2.85 0.715 —0.491 0.077 0.645 —1 —0.158 0.069
0 0 —0.176 0.044 0.077 0.110 —0.109 —0.158 0.069

2.85 2.85 —0.823 0.028 0.939 -—1 1 —0.158 0.103
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hinges form and rotate at sections 5 and 4, their signs being positive and negative,
respectively. This is followed by elastic unloading. During the application of the
load combination (0, —W) the bending moment at section 5 reaches the value
—M,, and there is a consequent change of —0.034 M, //ET in the hinge rotation
at this section. The bending moment at section 4 remains within the elastic
range, and so the hinge rotation at this section is unaltered.

Elastic unloading completes the first cycle. During the second application of
the loading (W, W), the bending moment at section 5 reaches the value +M,,
and there is a change of +0.034 M,,//ET in the hinge rotation at this section. The
bending moment at section 4 only just attains the value —M, as the peak loads
are reached, and so there is no change in the corresponding hinge rotation. The
resulting bending moments and hinge rotations are given in the fifth row of
Table 8.1, and it will be seen that they are identical with those occurring after
the first application of the loading (W, W). A condition of alternating plasticity
has therefore been established, in which the plastic hinge rotation at section 5
varies between the extreme values 0.103 M,J/ET and 0.069 M, I/ET during each
cycle of loading.

In this particular case the critical value W, of W, above which alternating
plasticity would occur at section 5, is readily calculated. If W was equal to W,,
then the change of loading from (W, W) to (0, —W) would just change the
bending moment at section 5 from M, to —M,,, with the entire frame behaving
elastically during this load change. Using superscripts to represent the load
combinations, it is seen from Equations (8.1) that

MW = 04125W1, MOV = —0.3125 WL

Thus when W= W,,

(04125 W,I +0.3125 W) = 2M,
Wy = 2.759Mp/l.

I

8.2.2 Incremental collapse

A loading cycle which may cause incremental collapse if W exceeds a critical
value W; is shown in Fig. 8.3. The sequence of loading is:

V=wWH=W o (WW

V=0,H=0 (0, 0)
V=0,H=0 0, 0).
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Fig. 8.3 Cycle of loading which may cause incremental collapse
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The results of calculations for W = 2.9My/I are summarized in Table 8.2. In
each cycle of loading, application of the load combination (W, W) causes the
formation and rotation of plastic hinges at sections 4 and 5. Additionally, from
the third cycle onwards, this loading also causes a plastic hinge to form and
rotate at section 3. After elastic unloading, the loading (0, W) causes the
formation and rotation of a plastic hinge at section 1.

The changes of bending moment during the third and fourth cycles are
identical, and recur in further cycles of the same loading. The changes in hinge
rotation, denoted by A¢, which occur during the fourth cycle are as follows:

section  AQEI/M,I  loading
1 —0.045 ©, W)
3 +0.090 W, W)
4 —0.090 w, w)
5 +0.045 W, W)

The same changes in hinge rotation would occur in each subsequent cycle of
the same loading. Putting a = 0.045 Mpl/EI, these changes are as depicted in
Fig. 8.4(a). It will be seen that if they took place simultaneously, they would
constitute a mechanism motion. ‘

nloc

(a) (b)

Fig. 8.4 Incremental collapse

(a) Changes during one cycle
(b) Changes during »n cycles

2.9 M/l

Table 8.2 Incremental collapse: W

b3 £T G4 ET
pl

1 BT
Myl

—0.186
—0.186
—0.186
—0.186

0.116

—0.865 0.035 0.968 -1

—0.249

2.9

2.9

0.116

0
—0.078

—0.078

—0.196

0.124
—0.465

0.098

0.071

0.116

0
0

0.806
—0.100

0.082

0.629
0.085

2.9

0.116

0.079
—1

0.082

—0.0%4

0.171

—0.256
—0.256
—0.256
—0.256

0
0
0
0

—0.078
—0.078
—0.133
—0.133

—0.818 0.082 0.991

—0.202

2.9

2.9

0.171
0.171

0.124 —0.196
—0.451

0.121

0.118

0.777
—0.129

0.110
0.110

0.672

2.9

0.171

0.092

0.128

—0.094

0.216

—0.333
—0.333
—0.333
—0.333

0.050

—0.133
—0.133
—0.179
—0.179

1

0.100
0.136
0.688

—0.800
—0.184

2.9

2.9

0.216

0.050

—0.196

0.124
—0.446

0.130
0.121
0.121

0.216

0.050

0.766
—0.140

2.9

0.216

0.050

0.098

0.144

—0.094

0.261

—0.423
—0.423
—0.423
—0.423

0.140
0.140
0.140
0.140

—0.179
—0.179
—0.224
—0.224

1

0.100
0.136
0.688

—0.800

—0.184

2.9

2.9

0.261

0.124 —0.196

—0.446

0.130
0.121

0.261

0.766
—0.140

2.9

0.261

0.098

0.121

0.144

—0.094
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The horizontal deflection # at the top of each column is therefore increased
by an amount J« in each complete cycle of loading after the third. The effect of
n such cycles would therefore be to increase 4 by

0.045 M, 17
nle = n 0.045 My ,
ET

as shown in Fig. 8.4(b). It follows that if n is sufficiently large, deflections of
any magnitude can be built up, with the same increment occurring in each cycle.
This would be a failure by incremental collapse, and the mechanism of Fig. 8.4(b)
is therefore referred to as the incremental collapse mechanism.

Since the eventual deflections of the frame are very large, the requirements of
compatibility can only be met because the increments of plastic hinge rotation
which take place in each cycle are consistent with a mechanism motion, which
of itself demands no curvature changes along the members. This is the essential
characteristic of any failure by incremental collapse.

The phenomenon of incremental collapse may best be understood by
examining the changes in residual moments which occur during a cycle of loading.
Consider the third cycle in Table 8.2. When the loads (W, W) are removed the
entire frame behaves elastically, and at section 5, for example, the bending
moment changes from M, to —0.196 M, an elastic change of —1.196 M,,. If this
same loading were to be reapplied, the bending moment at section 5 would just
reach the value M, as the peak loads were attained, since the elastic changes are
reversible. Using the symbol m to denote residual moment (under zero external
load), the situation just described is summarized as follows:

ms = —0.196 M, ,
MV = +1.196 M, (for W = 2.9 M,/)
ms + V) = —0.196 M, + 1196 M, = M.

However, in the cycle of loading under consideration, removal of the loads
(W, W) is followed by the loading (0, W). This causes the formation and rotation
of a plastic hinge at section 1, and the residual moment distribution throughout
the frame is thereby altered. In particular, ms; becomes —0.140M,,. Thus when

the loading (W, W) is subsequently applied, the frame cannot respond by wholly
elastic behaviour, since as far as section 5 is concerned this would require

ms ¥ MW < M,
whereas in fact
ms + MWW = —0.140M, + 1.196 M, = 1.056 M.

Further examination of Table 8.2 shows that whenever the loading (W, W) is
applied, the plastic hinge rotations which occur at sections 3, 4 and 5 alter the
residual moment at section 1 in such a way that the loading (0, W) causes a

= 2.857 M/l

Table 8.3 Behaviour when W

+0.105
+0.105
+0.105
+0.105

—0.162
—0.162
—0.162
—0.162
—0.214
—0.214
—0.214
—0.214
—0.250
—0.250
—0.250
—0.250

0.029 0.943 —1 +1

—0.828
—0.221

2.857
—1

2.857

0
—0.058

—0.179
—0.058

0.107
—0.462

0.086

0.065

0.785
—0.108

+1

0.610

2.857

0.074
0.074

0.074

0.074
0.063

—0.107

+0.145
+0.145
+0.145
+0.145

+0.173

—0.058
—0.058
—0.098

—1

0.960
0.103
0.095

—0.794
—0.187

2.857
—1

2.857

—0.179

0.107
—0.452

0.099

0.764
—0.129

+1

0.642
0.106
0.087

2.857

—0.098

0.084

—1

0.095

—0.107

—0.098
—0.098
—0.126

0.972

—0.770
—0.163

2.857
—1

2.857

+0.173
+0.173

—0.179

0.107
—0.445

0.115

0.123
0.664
0.128

0.749
—0.144

+1

0.110
0.110
0.981

2.857

+0.173

—0.126
—0.126
—0.126
—0.146
—0.146

0.091

-1

—0.107

+0.193
+0.193

—0.276
—0.276
—0.276
—0.276

0.104
0.140
0.679

—0.753
—0.146

2.857
—1

2.857

—0.179

0.107
—0.440

0.124
0.120
0.120

+0.193

0.738
—0.155

2.857

+0.193

0.096

0.143

—0.107
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further plastic hinge rotation at this section. Similarly, whenever the loading
(0, W) is applied, the plastic hinge rotation at section 1 alters the residual
moments at sections 3, 4 and 5 so that the loading (W, W) causes further plastic
hinge rotations at each of these three sections. It is therefore the changes in
residual moments which occur as each load combination is applied which lead to
incremental collapse for the particular value of W under consideration.

8.2.3 Behaviour when W = W

The same loading cycle will now be considered, but with a lower value of W,
namely 2.857M,/I. It will be shown that this is the limiting value of W above
which incremental collapse will occur, and it is therefore termed the incremental
collapse load.

Table 8.3 summarizes the behaviour during the first four cycles. After the
first application of the loading (W, W), the value of M3 is 0.943 My, and with
each successive application of this loading M; increases. Table 8.4 gives the value
of M, as a function of #, the number of applications of the load combination
(W, W), and it will be seen that M, approaches M, asymptotically, only reaching
M, after an infinite number of cycles. This behaviour may be contrasted with
the response to the same cycle of loading, but with W = 2.9 M,,/I, which was
given in Table 8.2. With this value of W, M; attained the value M, during the
third application of the loading (W, W), and in that and each subsequent cycle
plastic hinge rotation occurred at section 3.

Table 8.4 Values of M3 for load combination (W, W): W = 2.857 M/l

n 1 2 3 4 5 6 7 8 9 10 oo

M3/M, 0.943 0.960 0.972 0.981 0.987 0.991 0.994 0.996 0.997 0.998 1

It therefore appears that for this cycle of loading, a plastic hinge will only
form at section 3,in addition to sections 1,4 and 5, when W exceeds 2.857 M, /1.
Incremental collapse only becomes possible when the effect of a complete cycle
of loading is to add increments of plastic hinge rotation at the four sections
1, 3, 4 and 5, these increments corresponding to a mechanism motion if they all
occurred simultaneously. It follows that the incremental collapse load Wi is
2.857 My/l.

A further feature of the behaviour summarized in part in Table 8.3 is that the
increments in plastic hinge rotation occurring in each cycle decrease in a
geometrical progression, and therefore tend to zero as the number of cycles
tends to infinity. Thus after an infinite number of cycles have taken place, there
is no further plastic flow anywhere in the frame, which would respond elastically
to any further cycles of loading. When this happens, the frame is said to have
shaken down.
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Consider now the frame in its shaken down condition, when W = W;. The
residual moments which have been attained must satisfy the following
conditions:

my + W = —M,
ms + M §W’ W) = +M,
my + MW = —M,
ms MW =+,

(8.2)

Substituting the values of the elastic moments derived from Equations (8.1),
my = 03125 Wi —M,
ms = —03W{ + M,
0.3875W —M,
—0.4125W + My,

(8.3)

3

-

EN
I

g
1

The residual moments must be statically admissible with zero external loads.
There are two equations of equilibrium, which may be obtained in the usual way
by the principle of virtual displacements; they are:

—my +my, —mg +my = 0. 8.4)
—m, +2ms —mg = 0. 8.5)

Adding these equations,
—mq +2mg —2mg4 +ms = 0. (8.6)

Substituting the residual moments given in Equations (8.3), it follows that
—(0.3125 Wl — M) + 2(—0.3 Wil + M) —2(0.3875 Wil —My,)
+(—04125Wl+Mp) = 0
21W = 6M,

Wy = 2.85TMp/l.

With this value of Wy established, the residual moments are found from Equations
(8.3) and either (8.4) or (8.5) to be:

my = —0.107M,
my, = +0.179M,
my = +0.143 M,
my = +0.107 M,
ms = —0.179 M.
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If the step-by-step analysis, summarized in Table 8.3 for the first four cycles of
loading, is continued until the shaken down condition is established, the same
residual moments are found to have been developed.

The process just described affords a method of calculation for the value of
Wi, which is however dependent upon the knowledge that the incremental
collapse mechanism is as shown in Fig. 8.4(b). Theorems which enable the correct
incremental collapse mechanism to be identified are discussed in Section 8.3.

8.2.4 Effect of cyclic loading on deflection

Once the plastic hinge rotations have been calculated, the deflection at any point
is readily determined, for example by the unit load method (Section 2.5.5).
Fig. 8.5 shows how the horizontal deflection 4 which occurs at the top of either
column under the loading (W, W) varies with #, the number of applications of
this load combination.

hEI
2
Myt ¢
0-7 W=2.90 M,
0-6 g
0-5
0-4 Wy=2:857 M,
0-3 g
*
o0l W*=2.737M,
[
01
o A RV NN SN N IS N N >
1.2 3 4 5 6 7 8 9 10 n

Fig. 8.5 Effect of cyclic loading on horizontal deflection

Three (h, n) relations are shown. When W = 2.9 M, /1, the same increment of
deflection occurs in each loading cycle after the third, when the incremental
collapse mechanism becomes established. For W = W = 285TM,/I, the
deflection increases with each cycle, but tends asymptotically to a definite limit
as the frame shakes down. Further step-by-step analyses show that the behaviour
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is similar for values of W lying between the limits W* and W;, where W* =
2.737 My/l. When W is less than W*, repetition of the loading cycle produces no
increase in deflection. Plastic hinges may form when the load combination (W, W)
is first applied, but the residual moments which are then produced are such that
all further loadings are borne by wholly elastic action. Calculations of this kind
were first given by Horne (1949) for the case of a fixed-ended beam of length !
subjected to a load applied alternately at points at a distance //3 from either end
of the beam.

It is readily verified that plastic collapse would occur under a single application
of the load combination (W, W) if W = W, = 3M,/I. Thus for this frame and
loading,

W 2.857

= 2220 = 095,
W, 3

so that incremental collapse cannot occur unless W is within 5 per cent of the
plastic collapse load.

Fig. 8.5 illustrates the general point that the number of cycles of loading
required to produce considerable deflections during incremental collapse is quite
small. For instance, when W = 2.90M,,/1, the deflection occurring upon the first
application of the loading (W, W) is doubled after only seven cycles of loading.

8.2.5 Experimental evidence

Neal and Symonds (1958) tested miniature rectangular frames subjected to
cycles of loading of the type shown in Fig. 8.3. The results obtained, relating the

. growth of deflection to the number of cycles of loading at various values of W,

agreed well with theoretical relations of the type shown in Fig. 8.5. In particular,
it was observed that the growth of deflection was limited until a value of W close
to the calculated value of W; was reached.

Tests on beams resting on three supports, with loads applied to each span,
were casried out by Massonet (1953), and also by Gozum and Haaijer (1955).
Popov and McCarthy (1960) tested a pinned-base rectangular frame with unequal
column lengths. In ail these investigations reasonable agreement was found.

8.3 Shake-down theorems

It was shown in Section 8.2 that when a structure is subjected to variable repeated

* loading, it is possible for plastic flow to continue indefinitely by either alternating

plasticity or incremental collapse. The shake-down theorems are concerned with
those conditions under which plastic flow will eventually cease, no matter how
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often and in what sequence the loads are applied. Some definitions are needed
before the theorems are stated.

8.3.1 Definitions

At any stage during the loading, let M; denote the bending moment at a particular
cross section j. If all the loads were completely removed, and the frame behaved
elastically during this removal, there would be a residual bending moment m; at
this section defined by

my = M; —M, ©.7)

where 7; is the bending moment which would be produced by the current
loading if the entire frame behaved elastically,

It is possible that the unloading process might not be wholly elastic, but even
if this were so Equation (8.7) is still taken as the formal definition of residual
moment for the present purpose. Any distribution of residual moment m; defined
in this way will be statically admissible with zero external loading, since both M;
and .#; must be statically admissible with the current loading.

As in Section 8.1, it is supposed that a frame is subjected to loads APy,
APy, ..., NPy, ..., APy, and that each load AP, can vary between limits (AP;*,
APFH™). The Principle of Superposition may be used to determine the maximum
and minimum possible values of the elastic moments .4 when all possible
variations of the loads between their prescribed limits are taken into account.
These values will be denoted by A 4" and A\.# "™ The calculation is easily
performed when each load AP, can vary independently of the others, as will be
seen in Section 8.4, It is also possible to allow for any connection between two
or more of the loads, for example that two loads could never be applied
simultaneously.

There will be a shake-down load factor A above which the frame would fail
to shake down, with plastic flow continuing either by alternating plasticity or
by incremental collapse. Thus:

Aa
A1,

I

for alternating plasticity Ag

I

for incremental collapse Ag

where A, and A; are the alternating plasticity and incremental collapse load
factors as defined in Section 8.1.

Examples of failures by alternating plasticity and incremental collapse were
given in Section 8.2. In both cases these involved the repetition of particular
cycles of loading at a constant load factor. Fortunately, the values of Af, A, and

therefore A are independent of the detailed nature of the sequence of loading to

which the frame may be subjected, as will be evident from the form of the
shake-down theorems.

171
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Fig. 8.6 Bending moment-curvature relation assumed for shake-down theorem.

The bending moment-curvature relation which is usually assumed in shake-
down analysis is shown in Fig. 8.6. This relation is appropriate for a beam of
ideal plastic material whose cross section has two axes of symmetry, and which
is bent about one of these axes. The magnitudes M, and My, of the yield and
plastic moments are then the same for bending in either sense. Furthermore, the
yield range of bending moment within which wholly elastic behaviour will occur
remains at 2M, regardless of the previous loading history.

8.3.2 Shake-down or lower bound theorem
For the (M, k) relation of Fig. 8.6, the following theorem has been established:

Shake-down theorem. If there exists any distribution of residual bending moment
7 throughout a frame which is statically admissible with zero external loading
and which also satisfies at every cross section j the conditions

My + N M < (My); (8.8)
Ay + N M PP = — (M) (8.9)
NA 2 — T <2My);, (8.10)

the value of A will be less than or equal to the shake-down load factor Aq.

The conditions (8.8), (8.9) and (8.10) will be referred to collectively as statical
conditions. Tt is evident that if they could not be satisfied, shake-down could not
occur; these conditions are therefore necessary for shake-down to be possible.



172 THE PLASTIC METHODS OF STRUCTURAL ANALYSIS

The theorem states that they are also sufficient. There is thus a close analogy
with the static theorem of plastic collapse, given in Section 3.2.1. A frame can
be said to adapt itself to variable repeated loading in the most effective way
possible; plastic flow only continues indefinitely when A increases beyond the
value A above which it becomes impossible to find any set of residual moments
satisfying the necessary conditions for the avoidance of plastic flow. Similarly
under proportional loading a frame only fails by plastic collapse when the load
factor A increases to a value A, above which no safe and statically admissible
bending moment distribution can be found. The existence of at least one such
distribution is clearly a necessary condition for it to be possible for the loading
in question to be carried.

If \ is imagined to be increased steadily from zero, it will become progress-
ively more difficult to satisfy the inequalities (8.8)—(8.10). One possibility is
that the inequality (8.10) could not be satisfied at a particular cross section if A
exceeded Aq, although all the conditions (8.8) and (8.9) could still be met. In
this case the failure would be by alternating plasticity, with Ay = A\,. The other
possibility is that the conditions (8.8) and (8.9) could not all be met simul-
taneously, although each inequality (8.10) was still satisfied. The failure would
then be by incremental collapse, with Ay = A;.

A continued inequality can be written down for each cross section j from the
inequalities (8.8) and (8.9), as follows:

—Mp); — AJ{mm S (My); — x/{jmax’

so that

AP — Jls‘“*") < 2(My);. (8.11)

This may be compared with the inequality (8.10); it is less restrictive but
becomes identical with (8.10) for the case of a beam with a shape factor » of
unity, so that My = M,,. In thisspecial case the inequality (8.10) may be dropped
from the shake-down conditions, as it is contained within (8.8) and (8.9).

The shake-down theorem was first stated by Bleich (1932), but his proof only
covered frames with not more than two redundancies. A general proof for
hypothetical pin-jointed trusses, assuming ideal plastic member behaviour in
both tension and compression, was given by Melan (1936), and was later simplified
by Symonds and Prager (1950). Melan’s proof was adapted by Neal (1950, 1951)
to frames, and Appendix B sets out the details for the special case » = 1, so that
My =M.

As pointed out by Koiter (1952), the conditions (8.8)—(8.10) are appropriate
only when the members of the frame obey the assumptions stated in Section
8.3.1, which lead to the form of (M, k) relation shown in Fig. 8.6. If these
assumptions are not obeyed, the conditions for shake-down to occur must be
stated in terms of stress distributions across each section, rather than their
moment resultants. However, the conditions (8.8)—(8.10), covering as they do
the frequently occurring case of members with two axes of symmetry and equat
yield stresses in tension and compression, are sufficient for many practical cases.
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8.3.3 Upper bound theorem

The upper bound theorem is concerned with values of A derived from assumed
alternating plasticity or incremental collapse mechanisms. Alternating plasticity
will first develop at the cross section in the frame at which the range of elastic
bending moment (4 ™8 — 4/ ™M) i greatest. If this cross section is denoted by
k,the load factor at which alternating plasticity would be incipient is given by

N A — MT™) = 2(My . (8.12)

The value A, calculated in this way can be said to be the value of A corresponding
to an assumed alternating plasticity mechanism consisting of a single plastic
hinge at section k.

If a particular incremental collapse mechanism is assumed, a corresponding
value Aj of the load factor A can be calculated. An example of this process was
given in Section 8.2.3;it can be put in general terms as follows. Let ¢; denote
the hinge rotation at cross section j during a small motion of the assumed
mechanism. Positive and negative values of §; are distinguished by superscripts,
g5 and 6. For the present purpose the assumed mechanism is treated as though
it were the actual incremental collapse mechanism, with incremental collapse
load factor Aj. Let my denote the residual bending moments in the frame at
section j when it has shaken down. The value of m; can be determined from one
of the following two equations:

my + N AT = (My);  forall 67,
my + NP = —(Mp); forall 65

(8.13)
(8.14)

I

Since the m; are statically admissible with zero external loads, it follows from
the Principle of Virtual Work that

Y m8; = 0,

where the summation covers all the hinge positionsj in the assumed mechanism.

(8.15)

'Using Equations (8.13) and (8.14),

ALAPE] 65+ Y [~ (Mp)J el 07 =

2 101p) —

A Y LT a0 67] (8.16)

‘Equation (8.16) enables the value of X; which corresponds to any assumed
‘mechanism of incremental collapse to be calculated.

The upper bound theorem can now be stated as follows:

| Upper bound theorem. The value of X corresponding to any assumed mechanism

of alternating plasticity (A;) or of incremental collapse (7\;) must be either
greater than or equal to the shake-down load factor Aq.




174 THE PLASTIC METHODS OF STRUCTURAL ANALYSIS

Any value of X calculated from an assumed mechanism will be referred to as
satisfying the kinematical conditions of the upper bound theorem.

An upper bound theorem was developed by Koiter (1956, 1960). This
theorem focuses attention on hypothetical cycles of plastic deformation.
However, it does not provide a basis for a reasonably simple method of calculation
for an upper bound on Ag, whereas the upper bound theorem just stated is well
suited to this purpose. The relationship between these two theorems has been
clarified by Smith (1974).

8.3.4 Observations on theorems

The shake-down theorem is also valid for cases in which thermal stresses occur,
as pointed out by Prager (1956). All that is necessary is to extend the definition
of # to cover moments developed due to changes of temperature, assuming
wholly elastic behaviour,

The presence of initial residual moments in a frame due to lack of fit of
members, the fabrication process or the movement of supports has no influence
on the conditions for shake-down to occur, and therefore on the value of A,.
However, the elastic bending moment distribution depends upon joint and
support stiffnesses, and so Ag will also depend on these factors. This is in contrast
to the situation in a plastic collapse analysis, since the value of the plastic collapse
load factor A, is independent of joint and support stiffnesses, as pointed out in
Section 2.6.

The shake-down theorem specifies conditions which, if satisfied, ensure that
plastic flow will eventually cease. It does not enable upper bounds to be placed
on the deflections which may develop in a frame subjected to variable repeated
loading when A does not exceed Aq. Several attempts have been made to establish
such bounds, for example by Capurso (1974), but none of these have been
completely successful.

A uniqueness theorem for the value of A, can be formulated by combining
the shake-down or lower bound theorem and the upper bound theorem. This
theorem is stated for the sake of completeness:

Uniqueness theorem. 1f the statical conditions of the shake-down theorem and
the kinematical conditions of the upper bound theorem are met, A must be equal
to the shake-down load factor A,.

8.4 Methods of analysis

A method of analysis suitable for simple beams and frames will now be described.
It is based on the upper bound theorem, and consists essentially of determining
the load factor A; corresponding to each possible mechanism of incremental
collapse. Each of these values is an upper bound on A, and the load factor A for
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alternating plasticity is also an upper bound. The lowest of the upper bounds
thus obtained will be the correct value of A;. The conclusion is finally checked
by examining the statical conditions of the shake-down theorem.

8.4.1 Hlustrative calculation

The frame used to illustrate the method is shown in Fig. 8.7(a). Each member
has a plastic moment 25 kN m, with shape factor 1.15. The loads ¥ and H can
each vary independently between the following limits

V: (16X, SNKN
H: (10, O)kN.

(©) (d)

Fig. 8.7 Rectangular portal frame and possible incremental collapse mechanisms

(a) Frame and loading
(b) Sway mechanism

(c) Beam mechanism

(d) Combined mechanism

The first step is to determine the maximum and minimum elastic bending
moments in the frame. The elastic bending moment distribution due to loads H
and Vis given in the first row of Table 8.5. At cross section 2, for example,

My = —08V+075H.

Since the coefficients of ¥V and H are negative and positive, respectively, the
maximum elastic moment occurs at this section when ¥ has its smallest value,



176 THE PLASTIC METHODS OF STRUCTURAL ANALYSIS

52, and H has its largest value, 10X, Thus
AT = —0.8 (50)+0.75 (10)\) = 3.5),
the units being omitted for convenience. This value, together with the

corresponding load combination (S, 10Q) is entered in the table.

Table 8.5 Elastic bending moments: V(16\, 5\); H(10), 0)

Cross section 1 2 3 4 5
M 04V  —0.8V 1.2V —0.87 0.4V
—1.25H +0.75H —0.75H  +1.25H
v 6.4\ 3.51 1928 —4A 18.91
(16X,0) (50, 100) (16M\,—) (5A,0) (167, 10N)
A in —10.58 —12.87 6\ —20.3\ 2
(57, 100) (167, 0) (57, =) (16X, 10M) (57, 0)
A(M ™ — ™) 16,90 16.3\ 13.27 16.3) 16.9A

The second and third rows of Table 8.5 give values of the maximum and
minimum elastic moments at each section, calculated in this way, together with
the load combinations which cause them. At section 3 the elastic moment is
unaffected by H, and so no value of this load is specified in the two combinations.

The final row of the table gives values of the elastic bending moment range
A(M ™ — g ™in) The largest range is 16.9), occurring at sections 1 and 5; the
alternating plasticity load factor A} is therefore given by

169\, = 2M, = 50/1.15
Ay = 2.573.

In the analysis of the possible mechanisms of incremental collapse, the
equations of equilibrium for residual moments will be required. These equations
may be derived by using the principle of virtual displacements. For the three
mechanisms shown in Fig. 8.7(b), (c) and (d), application of this principle leads
to the equations

—H, +m2 — My + ms = 0. (8.17)
—my +2m3 —my = 0. (8.18)
—my +2my —2m4 +mg = 0. (8.19)

Equation (8.19) is not, of course, independent of the other two equations, from
which it is obtained by addition.
The first possible mechanism of incremental collapse to be considered is the

VARIABLE REPEATED LOADING 177

sway mechanism of Fig. 8.7(b). The plastic hinges shown would not, of course,
all occur simultaneously. The residual moments at shake-down, having regard to
the signs of the hinges, would be given by

my FAMP = —M, 6, = —0.

my HAMTE = +M, 8, = +6.

ms FAMPD = =M, 0, = —0.

ms +AMP= = +M, 05 = +0.

With M, = 25, and taking values of the elastic moments from Table 8.5,
m; —10.58 = —25
my + 35N = +25
my — 203N = —25
ms + 189\ = +25,
Substituting in Equation (8.17),
—(10.5A—25) + (—3.5A +25) —(20.3A —25) + (—189A+25) = 0
532X = 100
A = 1.880 = A5

This calculation follows the steps embodied in Equations (8.13)—(8.16).
Assuming now the beam mechanism of Fig. 8.7(c),

My — 128\ = =25 0, = —0
my+ 192N = 425 0, = +20 (821)
my —203N = —25 6, = —0.

(8.20)

Substituting in Equation (8.18),
—(12.8A—25) +2(—19.21 + 25) — (20312 —25) =0
71.50 = 100
A= 1399 = .
Finally, for the combined mechanism of Fig. 8.7(d),
my; — 1050 = —25 6, = —0
my + 192X = +25 6y = +20
mg —20.3N = —25 64 = —20
ms + 189N = +25 fs = +0.

(8.22)
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Substituting in Equation (8.19),
—(10.5A—25) + 2(—19.2A + 25) — 2(20.3A —25) + (—189A+ 25) = O
108.4x = 150
A = 1.384 = V.

The upper bounds which have been derived are

alternating plasticity A = 2.573
incremental collapse: sway mechanism N o= 1.880
beam mechanism N o= 1.399

combined mechanism A{' = 1.384.
From the upper bound theorem it is concluded that As = A\{ = 1.384, failure
being by incremental collapse in the combined mechanism.

This conclusion is now checked by verifying that the requirements of the
uniqueness theorem are met. This involves determining the complete residual
bending moment distribution in the frame after it has shaken down with
X = A¢ = 1.384, The values of m;, mj3, m4 and ms can be derived immediately
from Equations (8.22) when A = 1.384, and then m, is found from Equation
(8.17) or (8.18). These residual moments are given in the first row of Table 8.6.

Table 8.6 Bending moments after shake-down: \g = 1.384

Cross section 1 2 3 4 ' 5
m —10.47 —6.23  —1.57 3.09  —1.15
g M T 8.86 4.84  26.57 —5.54  26.15
As AP —14.53  —17.71 830  —28.09 2.76
Mmax —1.61 —1.39 25 —245 25
(16X, —) (16X, 10,)
Mmin —25 —23.94 6.73 —25 1.61
(5As, 10Xg) (16X, 10Ns)
M@ax _ pmin 23.39 22.55  18.27 22.55 23.39

The remainder of the table is largely self-explanatory. The second and third rows
are the maximum and minimum elastic moments for A = A, = 1.384. In the next
two rows, the maximum and minimum bending moments which could occur
after the frame had shaken down are given; they are calculated as follows:
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MO = g+ A M
MO =+ N A

The final row of the table records the range of bending moment at each section,
which may be compared with the available range of elastic behaviour 50/1.15, or
43 48 kNm.

The statical conditions of the shake-down theorem, Equations (8.8)—(8.10),
are all met by the distributions of bending moment given in Table 8.6. The
kinematical conditions of the upper bound theorem are also satisfied, since the
plastic moment is attained at sections 1, 3, 4 and 5. It follows from the unique-
ness theorem that A, = 1.384.

The load combinations which would produce plastic hinges in the incremental
collapse mechanism are given in Table 8.6. It will be seen that if X exceeded Ag
incremental collapse would occur if H was held constant at 10X\ while V varied
cyclically between its extreme values 16X and 6.

It is of interest to compare the value of A which has been obtained with the
plastic collapse load factor A, corresponding to a single application of the worst
possible load combination. This combination is evidently

V = 16X, H = 10\

Failure by plastic collapse would occur with A, = 1.442, the collapse mechanism
being the combined mechanism of Fig. 8.7(d). The value of Ag, 1.384, is only
4 per cent below A, in this particular case.

It is to be expected that A, will never exceed the collapse load factor A, for
the worst possible load combination, since the conditions of the shake-down
theorem include those of the static theorem of plastic collapse as a special case.
The factors governing the difference between A and A, have been studied by
Ogle (1964) and Heyman (1972).

8.4.2 Partial incremental collapse mechanism

A difficulty arises when the mechanism of incremental collapse has fewer than
(r + 1) plastic hinges, where 7 is the number of redundancies in the frame. To
illustrate the point, consider again the frame of Fig. 8.7(a), with the loads now
varying independently between the limits:

Vi (16X, SN
H: (6, O)kN.

The maximum and minimum elastic bending moments are then as given in Table
8.7.
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Table 8.7 Elastic bending moments: V(I6\, 5\); H(6\, 0)

Cross section 1 2 3 4 5
N M 6.4\ » 0.5A 19.2A —4A 13.9A
(16N, 0) (57, 60) (167, —) (5),0) (16X, 67)
\_g/in —5.5A —12.8\ 6A —17.3X 2N
v (5M,60) (167, 0) (57, ) (16X, 60) (57, 0)
N M — MY 11 90 1330 13.2A 1330 11.9x

Proceeding as in the previous example, the following upper bounds on A, are
readily established:

alternating plasticity A, = 3.269
incremental collapse: sway mechanism A o= 2.688
beam mechanism N = 1.460

combined mechanism A{ = 1.623.

Evidently A = Af = 1.460, failure being by incremental collapse in the beam
mechanism.

To verify this conclusion, it is necessary to show that the requirements of the
uniqueness theorem can be met with A = A; = 1.460. After shake-down has
occurred at this value of A, the residual moments at cross sections 2, 3 and 4,
which are those involved in the incremental collapse mechanism, will be given by

My + A MPR = —~M, 0, = —0
My + A MHD™ = +M, 03 = +20
Ma + A MPR = =M, 0, = —0.

With A, =1 460, and taking values of the elastic moments from Table 8.7,
my, = 128\, —25 = —6.31
my = 25—19.27; = —3.03
mq = 17.30,—25 = 0.25.

These residual moments satisfy Equation (8.18). When substituted into Equation
(8.17), it is found that

—my +ms = 656 (8.23)

and these two residual moments cannot be determined uniquely. This is, of
course, because the incremental collapse mechanism has one plastic hinge fewer
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than the (# + 1) hinges required for a ‘complete’ mechanism.

Table 8.8 summarizes the position which has now been reached. The three
residual moments m,, ms and m, are known, and all the elastic moments have
peen evaluated with A = 1.460.

Table 8.8 Bending moments after shake-down: \g = 1,460

Cross section 1 2 3 4 5
m —6.31  —3.03 0.25
As AT 9.34 0.73  28.03 —5.83  20.29
As AR —8.03  —18.69 8.76 —25.25 292
max —5.58 25 —5.58
M (16}, =)
min —25 5.73 —25
(16X, 0) (161, 6),)
M — ppmin 17.37 1942 19.27 1942 17.37

To satisfy the requirements of the shake-down theorem, m, and ms must
satisfy Equation (8.23) and also comply with the following conditions

my+ 934 < 25

<
m, — 803 > —25
ms +2029 < 25
ms + 292 > —25.

Taking these inequalities in pairs, the following two continuing inequalities
are obtained:

—1697 < m; < 15.66. 8.24)
—2208 < ms; < 4.71. (8.25)
From Equation (8.23),
ms = my + 6.56,
and combining this with the inequalities (8.25)
—28.64 < m; < —1.85. (8.26)

Taking the more stringent requirements of (8.24) and (8.26),
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—1697 < m; < —1.85. (827)

Thus any value of m; lying between —16.97 and —1.85, together with the
corresponding value of ms from the equilibrium equation (8.23), will satisfy the
requirements of the shake-down theorem. One such pair of values is

m, = —10, ms = —3.44.

In this particular case a suitable pair of values of m; and m;s could easily have
been determined by inspection.

If Table 8.8 is completed using, for example, the values of m; and ms given
above, it will be seen that all the requirements of the uniqueness theorem are
met, thus confirming that A, = 1.460. The cycle of loading which would cause
incremental collapse if \ exceeded A, is seen from the entries in Table 8.8 to
consist of V being held constant at 16\ while H varied between its extreme
values of 6 and zero.

Under the worst possible combination of loads, namely

V = 16A, H = 6},

the plastic collapse load factor A, is 1.563, corresponding to the beam mechanism.
The value of A, 1.460, is 6.6 per cent below this value of A,.

8.4.3 Other methods of calculation

The method which has just been outlined comprises two steps. The first of these
is the determination of the value of A; corresponding to every possible mechanism
of incremental collapse, together with the value of A,. Once the correct
mechanism of incremental collapse has been established (assuming that failure
does not occur by alternating plasticity), the second step follows; this involves
confirming that all the requirements of the uniqueness theorem can be met when
A=A, as in Tables 8.6 and 8.8.

If the first of these steps is circumvented in some way, a trial-and-error
procedure of the kind suggested by Neal and Symonds (1950) results. For
instance, a plastic collapse analysis might first be carried out for the worst
combination of loads, leading to the plastic collapse mechanism; it would
then be a reasonable assumption that incremental collapse would occur by the
same mechanism. An analysis of this mechanism of incremental collapse would
then be performed, leading to a table such as 8.6 or 8.8. The assumed mechanism
would be correct unless one or more of the calculated values of M™® or pf™i
exceeded the plastic moment in magnitude.

The concepts underlying the method of combining mechanisms for plastic
collapse were extended by Symonds and Neal (1951) to cover the case of
incremental collapse. However, it is more difficult to judge which combinations
of mechanisms are likely to lead to the lowest corresponding value of A, and so
the technique is less effective for incremental collapse than for plastic collapse.
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A lower bound approach was first developed by Symonds and Neal (1950).
This was based on solving the inequalities (8.8)—(8.10) contained in the shake-
down theorem, taking into account the conditions of equilibrium which must be
obeyed by the residual moments. Heyman (1959) showed that this approach is
particularly suitable for solution using a digital computer program. The design of
frames for minimum weight if the criterion of design is the provision of a
prescribed load factor against incremental collapse or alternating plasticity has
been discussed by Heyman (1951, 1958).

8.4.4 Estimates of deflections

It is interesting to note that if certain quite plausible assumptions are made, an
gstimate can be made of the deflections in a frame after it has shaken down.
Suppose that if X exceeded A, failure would occur by incremental collapse rather
than alternating plasticity, so that A; = A;. It is then assumed that when the
frame is subjected to a large number of the critical loading cycles with A = A,
there will be one cross section, say g, at which M™®* or M™™ tends asymptoti-
cally towards the plastic moment in magnitude, but no plastic hinge rotation
actually takes place at this section, Meanwhile, plastic hinges will have formed and
undergone rotation at all the other sections involved in the incremental collapse
mechanism. Only if X\ exceeded A\; would there be any plastic hinge rotation at
section g.

This assumption was obeyed by the rectangular frame of Fig. 8.1 which was
analysed in Section 8.2.3. In this case the incremental collapse mechanism
involved plastic hinges at sections 1, 3, 4 and 5. Table 8.4 shows that the effect
of repetition of the critical loading cycle with W = W, (equivalent to A = A1) was
to cause M3 to approach M, asymptotically, but there was no plastic hinge
rotation at this section.

For the shaken down condition of a frame with A = A, the residual bending
moment distribution may be determined, as in Sections 8.4.1 and 8.4.2. With
the assumption of continuity at one of the hinge positions in the incremental
collapse mechanism, the technique described in Section 5.4 can be used to
identify this position. The plastic hinge rotations at the other sections, and also
the deflections of the frame when free from load, can then be determined.

8.5 Relation to design

As pointed out in Section 2.7, the plastic design of steel frames is appropriate
when plastic collapse is the ultimate limit state which governs the design, and
this is the situation in many practical cases. However, if a frame is subjected to
variable repeated loading, shake-down will not occur if the load factor exceeds a
value A, which is less than the load factor A, at which plastic collapse would
occur under the worst possible combination of loads. This raises the question as
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to whether the indefinite continuation of plastic flow, by either alternating
plasticity or incremental collapse, is a more relevant ultimate limit state than
plastic collapse for this type of loading. However, Horne (1954) has shown that
this is unlikely to be the case. A frame designed by the plastic method will have
an acceptably small probability of failure by plastic collapse; the probability of
the occurrence of either alternating plasticity or incremental collapse will almost
certainly be much less. Plastic collapse is the appropriate limit state in these
circumstances.

There are several points to be considered when comparing these ultimate limit
states. The principal one is that plastic collapse only requires a single application
of the appropriate load combination with X = A,. The probability of this
occurrence will be denoted by p. By contrast, incremental collapse requires the
application of several cycles of loading at a load factor greater than A;. Each
cycle of loading will include two or more combinations of load, so that
unacceptably large deflections would only develop after, say, » applications of
load, where n is of the order of 10. If the probability attached to a single
application of one of these combinations of load at a load factor greater than A;
is g, the probability of a failure by incremental collapse will be g™. Since Ay is
less than A, g will be greater than p. However, g will generally be small, so that
q" is likely to be much less than p. This argument is put rather crudely; variable
repeated loading will usually be stochastic in nature. Nevertheless, the essential
point, namely that incremental collapse requires a number of load applications,
to each of which is attached a small probability, will be clear.

The ratio \;/A, obviously has a bearing on the argument just outlined, which
depends essentially upon g being small. For the two examples given in Section
8 4, this ratio was 0,96 and 0.934, These are fairly typical values, and ratios less
than 0.8 are rarely encountered. It is therefore reasonable to assume that g is
small, unless the frame has unusual proportions or is subjected to an abnormal
type of loading.

A further point is that incremental collapse only occurs when A exceeds Ay,
and the increments of deflection which take place in each cycle become larger
the more X exceeds A;. For incremental collapse to occur as a result of a
reasonably small number of applications of load, say n = 10, A will need to
exceed A; by an appreciable margin, and this makes it even more likely that g is
small.

Finally, it will be appreciated that a failure by incremental collapse is gradual,
the deflections building up over a period, so that ample warning of the progress
of this type of failure will usually be available. A greater likelihood of this kind
of failure could therefore be tolerated than for plastic collapse under a single
combination of loads, for which there would be no prior indications of the
imminence of failure. . :

Alternating plasticity, if it occurs, does not cause the growth of large deflec-
tions. The only risk involved is of fracture due to low endurance fatigue. Various
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investigators, for example Royles (1966), have shown that the life of mild steel
beams subjected to large reversals of strain, several times the yield strain, is of
the order of 102—10* cycles. The implication is that alternating plasticity is
most unlikely to be a relevant ultimate limit state. If a large number of cycles of
load of the order of 10°—107 could occur, fatigue would become a dominant
consideration in the design.
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Examples

1. A uniform beam of T-section has width & and depth 1.244. Its cross section
consists of two similar rectangles whose sides are 2 and 0.24q, and the material is
ideal plastic (see Fig. 1.3(b)). A bending moment is applied about an axis parallel
to the flange, causing flexure in the plane of the web. Find the position of the
neutral axis if the beam behaves elastically. If the bending moment is increased
until the whole section is fully plastic, show that the neutral axis moves parallel
to itself to the equal area axis through a distance 0.19a.

If the bending moment is then reduced from the plastic moment, show that
the neutral axis immediately assumes a new position in the web at a distance 0.2¢
from the equal area axis so that the stress remains constant at the yield stress
over a portion of the web of this length. Hence show that upon unloading from
the plastic moment the elastic range of bending moment is 0.36 per cent greater
than for the initially unstressed beam, whereas the flexural rigidity is 0.88 per
cent less.

2. A uniform beam ABCDE whose plastic moment is 30 kN m is simply supported
at A, C and E and carries concentrated loads P and Q at B and D, respectively:

= BC = CD = DE = 2m.
The loads can vary independently between the limits
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P(30\,0) Q(20A, 0)kN

Find the values of g and A, assuming a shape factor 1.15. The elastic bending
moments due to P and Q are

B: (13P—3Q)/16kNm

C: —(6P + 6Q)/16

D: (—3P + 13Q)/16,
sagging bending moments being reckoned positive.

3. A uniform beam ABCDEFG whose plastic moment is 40kNm is simply
supported at A, C, E and G and carries concentrated loads P, Q and R at B, D
and F, respectively:

AB = BC = CD = DE = EF = FG = 2m.
The loads can vary independently between the limits
P(40X,0) Q(20N,0) R(20X,0)kN.

Find the values of A¢ and A, assuming a shape factor of 1.15. The elastic
bending moments due to P, Q and R are

B: 0.8P —0.15Q + 0.05R kN m
C: —04P—030Q +0.1R
D:—0.15P +0.7Q —0.15R

E: 0.1P—0.30 —0.4R
F:0.05P—0.15Q + 0.8R,

sagging bending moments being reckoned positive.

4. A uniform beam ABCD whose plastic moment is 36 kN m is rigidly built-in at

A and simply supported at D. It carries concentrated loads P and Q at B and C,
respectively.

AB = BC = CD = 1.5m.
The loads can vary independently between the limits
P(20A,0) Q(20X, 0)kN.
Find the values of A and A, assuming a shape factor of unity. The elastic
bending moments due to P and Q are:
A: (—15P—12Q)/18kNm
B: (8P + Q)/18
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C: (4P +14Q)/18,
sagging bending moments being reckoned positive.

5. A uniform beam ABCD whose plastic moment is 45kNm is rigidly built-in
at A and D, and carries concentrated loads P and Q at B and C, respectively:

AB = BC = CD = 3m.
The loads can vary independently between the limits
P(207,0) Q(20\, —200)kN
Find the values of Ay and A, assuming a shape factor of unity. The elastic
bending moments due to P and Q are: ;
A: (—12P—6Q)/9kNm
B: (8P + Q)/9
C: (P +80)/9
D: (—6P —120)/9,
sagging bending moments being reckoned positive.

6. A uniform beam AB of length [ is built-in at both ends and has a plastic
moment M,,. It carries a concentrated load W which rolls back and forth along
the beam.

Plot the elastic bending moment diagram for various positions of the load,
and hence construct a diagram showing the maximum and minimum elastic
bending moments at each section. Hence determine W, and compare its value
with W,.

If the concentrated load W is at a position C, distance ! from A, the elastic
bending moments are:

A —Win (1 —pu)?
C: 2Wiu® (1 —w)?
B: —Wiu (1—pw),
sagging bending moments being reckoned positive.

7. A fixed-base rectangular portal frame ABCDE consists of two columns, AB
and ED, each of length 3.5 m, and a beam BD also of length 3.5 m. The frame is
of uniform section throughout, with plastic moment 40kNm and shape factor
1.12. The beam carries a vertical concentrated load V at its mid-point C, and a
horizontal concentrated load H is applied at D in the direction BD. The loads
~ can vary independently between the limits:

V(48\,0) H(24\, — 120N
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Find the value of A.
The elastic bending moments, using the sign convention of Fig. 8.1, are

A:—H+7V/48kNm
B: 0.75H—"1V/24
C: 7v/12

D: —0.75H — 7V[24
E: H+ 7V]48.

8.Find the value of A, for the frame of example 7 if the loads can vary
independently between the limits

V(48),0) H(20\, —12A)kN.

9. In the uniform, fixed-base frame shown in Fig. 8.1, all the members have a
plastic moment My, and a shapc factor of unity. The loads can vary independently
between the limits

V(2W,0) H(W,O0).

Find the value W, of W above which incremental collapse would occur. The
elastic bending moments due to ¥ and H are given in Equations (8.1).

10. For the frame of example 9, estimate the deflection % corresponding to the
load H when shake-down has occurred after a large number of cycles of loading
with W = W, and the loads have then been removed from the frame. The effects
of strain-hardening and the spread of plastic zones along the members may be
neglected.

The compatibility equations (2.19)—(2.21), derived in Section 2.5.3, and the
expression for 4 given in Equation (2.24) may be used.
Hint: Show that there must be some plastic hinge rotation at section 5 before
shake-down.



APPENDIX A
Proofs of Plastic Collapse Theorems

Constancy of curvatures during plastic collapse. A state of plastic collapse is
defined as one in which the deflections of the frame continue to increase while
the loads remain constant. From this definition it can be shown that during
collapse the distributions of bending moment and of curvature in the frame
remain unaltered as the deflections increase. To prove this, consider the changes
which occur during a definite small interval of time in which plastic collapse is
occurring. These are denoted by the prefix §, and are

8M, 6k : changes of bending moment and curvature at any cross section
other than a plastic hinge position.

8M;, 86; : changes of bending moment and hinge rotation at plastic hinge
position 7. ‘

Since the loads remain unchanged, the changes of bending moment §M and
8M; must satisfy the conditions of equilibrium with zero external load. The
changes of curvature and hinge rotation 8k and §8; must be compatible. It
follows from the Principle of Virtual Work, Equation (2.11), that

| om e ds+ 3 a0, = o, (A1)

where the integral covers all the members of the frame and the summation
covers all the plastic hinge positions.

The plastic hinge hypothesis is that hinge rotation only takes place when the
bending moment remains constant at the plastic moment, so that §M; = 0. It
follows that each term 6M; 66; in Equation (A1) must be zero, so that

| sms as = o. (A2)

Provided that the (M, k) relation is such that increments of bending moment
and curvature are always of the same sign,

5Msk > 0. (A3)

It then follows from Equation (A2) that 6M and Sk must both be zero at every
cross section. Thus during plastic collapse the bending moment and curvature
distributions remain unaltered. The increases of deflection which occur are
due solely to the rotations which occur at the plastic hinges, which must
therefore constitute a mechanism motion.
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The proviso embodied in (A3) is important. It precludes from consideration
a strain-softening type of behaviour in which an increase in the magnitude of the
curvature is accompanied by a decrease in the magnitude of the bending moment.

Static theorem. The static theorem was stated in Section 3.2.1 as follows: If
there exists any distribution of bending moment throughout a frame which is
both safe and statically admissible with a set of loads A, the value of A must be
less than or equal to the collapse load factor A,.

Let the actual collapse mechanism involve changes of plastic hinge rotation
50; at each plastic hinge position 7, and also changes of displacement correspond-
ing to each characteristic load P, which are denoted by 6d,.

Let M; denote the bending moment at cross section i in a distribution of
bending moment which is both safe and statically admissible with the set of
loads A, in accordance with the theorem. Further, let M; denote the bending
moment at section 7 in the actual distribution of bending moment at collapse.
This distribution must be safe and statically admissible with the set of loads A,,.

Using the Principle of Virtual Work,

Z >‘Pr adr = ZM; 661
S APSdy = ), M;56;.

In these equations the summations on the left-hand side cover all points of
application of load, and those on the right-hand side cover all plastic hinge
positions.

These two equations can be combined to give

Ne D M 86; = XY M; 80;. (A4)

Whenever §6; is positive, M; will be equal to the plastic moment + (M );. Since
M, is safe it cannot exceed +(Mp);. It follows that

M 860; > M;86; if §6;>0.
Similarly, if 86; is negative, M; = —(M,);, and M; > —(M,,);, so that again

M; 80; > M;80; if 86;<0.
It follows at once from Equation (A4) that

A< A,

which establishes the theorem.

Kinematic theorem. The kinématic theorem was stated in Section 3.2.2 as follows:
For a given frame subjected to a set of loads A, the value of A which corresponds
to any assumed mechanism must be either greater than or equal to the collapse
load factor A,.
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Let the assumed mechanism involve changes of plastic hinge rotation 50y at
each plastic hinge position k, and also changes of displacement corresponding to
each characteristic load P, which are denoted by 8d.

Let My, denote the plastic moment at cross section &, with a sign correspond-
ing to that of the plastic hinge rotation, so that

My = +(My), if 86,>0
My = —(Mp), if 805 <O0. (A5)

The value of X\ corresponding to the assumed mechanism is then obtained from

the equation
Y AP 8dy = Y, My 80y. (A6)

If My denotes the bending moment at section k& in the actual distribution of
bending moment at collapse, it follows from the Principle of Virtual Work that

Y AP 8dy = Y My 60y, (A7)
Combining equations (A6) and (A7),
Ae LMy 80y = \ 2 M6y, (A8)
Whenever 86y, is positive, My, =+ (M), from (AS5). Since My is safe it
cannot exceed + (M, ). It follows that
My 80y > M, 80y if 864 >0.
Similarly, if 80y, is negative, My = — (M} )y, and My > — (M, )y, so that again
M, 80, >M, 80, if 865 <O0.
It follows at once from Equation (A8) that
AZA,,

which establishes the theorem.

APPENDIX B
Proofs of Shake-down Theorems

Shake-down or lower bound theorem. The shake-down theorem was stated in
Section 8.3.2 as follows: If there exists any distribution of residual bending mo-
ment 77 throughout a frame which is statically admissible with zero external
loading and which also satisfies at every cross section j the conditions

my + N M < (Mp); (8.8)
iy N M > — (M) (8.9)
AA P — T <2(My); (8.10)

the value of A will be less than or equal to the shake-down load factor A.

This theorem will be proved for the case in which all the members of the
frame have a shape factor of unity, so that M, = M,,. In this case the inequalities
(8.10) may be discarded, as they are contained within (8.8) and (8.9). This
assumption implies that the (M, ) relation for each member is the ideal relation
of Fig. 2.1, for which

M=M, 8>0
M=—M,, 86<0
M|<M,, M = Els«.

The theorem is proved by considering the positive definite quantity U,
defined by

_ [ Oy —my)?
v=] S (B1)
In this equation m; represents the actual residual moment at cross section j dur-
ing any stage of the loading, and 77; is a distribution of bending moment sat-
isfying the conditions (8.8) and (8.9). (£1); and ds; are the flexural rigidity and
element of length respectively at the section j, and the integration covers all the
members of the frame.

Suppose now that during a definite small interval of time there are small
changes in the applied loads, causing changes which will be denoted by the
prefix 6. From Equation (B1),
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dm;
—ds;. (B2)
@Dy, |
It will now be shown that 8 U is always negative.

As pointed out in Section 8.3.1, residual moments are defined for the pur-
pose of shake-down analysis by the equation

my = M; — M (8.7)

sU = [ (my—m;)

which in incremental form is
6mj = 6Mj —‘5./{] (B3)

If there are changes in plastic hinge rotation 80y at cross sections denoted by
k, these will be compatible with the actual changes of curvature §M;/(EI);. The
changes of curvature 8.#;/(£1); which would have occurred if the entire frame
had responded elastically to the same small changes of load must satisfy the
requirements of compatibility with zero changes of plastic hinge rotation. It fol-
lows that the changes of curvature (8M; — §.4;)/(EI);, which from Equation (B3)
are equal to 8m;/(ET);, must be compatible with the plastic hinge rotations §0y.
Using these compatible changes of curvature and hinge rotation in the virtual
work equation, together with the distribution of residual moments (m; — ),
which must be statically admissible with zero external loads, it is found that

8 .
f(mj—mi)@%dsj + Y (my — i) 86 = 0. (B4)

From Equation (B2), it follows that

Suppose now that at a particular section ,
(my — 17y ) <0, (B6)

Using the inequality (8.8)
mye <M < (Mp)e — N ME™
mi + NME < (Mp)x.

This result shows that the plastic hinge which is undergoing rotation at this
section cannot be of positive sign, so that 89y <0. From Equation (B6) it
follows that

By a similar argument it can be shown that if (my, — ) >0, 68 must be
positive, so that the inequality (B7) also holds true in this case. It can therefore
be concluded that
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(e — )80y >0, (B8)

the equality sign covering those sections where my, = ;.
Combining this condition with Equation (B5), it is seen that

SU<0. (B9)

It is evident from Equation (B5) that § U will be zero if no plastic hinge ro-
tation occurs during the interval considered, for the 66 will then all be zero.
Thus U decreases whenever any plastic hinges undergo rotation and remains con-
stant when the behaviour is wholly elastic. Since U is positive definite, it must
either eventually become zero, in which case the distributions m; and 7%; would
be identical, or else settle down at some positive value and thereafter remain
unchanged. In either case the frame would have shaken down, thus establishing
the theorem.

Upper bound theorem. The upper bound theorem was stated in Section 8.3.3 as
follows: The value of A corresponding to any assumed mechanism of alternating
plasticity (A;) or of incremental collapse (A;) must be either greater than or
equal to the shake-down load factor A.

The first part of this theorem, that A > A, is virtually self-evident. Shake-
down could not occur if the elastic range of bending moment at any cross
section, A(A#™ — #™7) exceeded the available range of elastic response 2M,.
Thus

Al ™ — ™) <OMp, = Ny(M™S — ™),
so that
A <Ay
The load factor A; corresponding to an assumed incremental collapse mechan-
ism is calculated from Equation (8.16), as follows:

A Y RO A TR0%] = Y (M )i 0%l (8.16)

In this equation the hinge rotations are denoted by 6y, and on the left-hand side
superscripts are used to indicate the sign of each hinge.
From the shake-down theorem, condition (8.8) gives

As M < My )i — iy
At each hinge position where the rotation is positive, it follows that
Ao MR O < (Mp )0 — M. (B10)
Similarly, condition (8.9) of the shake-down theorem implies that

As«ﬂ?in = —‘(Mp)k — iy



196 THE PLASTIC METHODS OF STRUCTURAL ANALYSIS

so that at each hinge position where the rotation is negative,
N ST 03, < — (M) 0% — My O (B11)

Using the inequalities (B10)and (B11), and summing over all the plastic hinge
positions in the assumed mechanism, it is found that

As O [AE0% + MTR0R] <D (M) l01] = My, (B12)

Since the residual bending moments 77y are statically admissible with zero
external load, it follows from the Principle of Virtual Work that

z rﬁkek =0 (B13)
and therefore
A 0 [AE=0% + AEROL] < T (M) 0kl (B14)

Comparing this result with Equation (8.16), it follows at once that
A <N

which establishes the theorem.

Answers to Examples

Chapter 1
7. 1848cm® 3.1.80 4. 0.1B from centre, 0.3B%0,
5. 0.741 6.0.6D, 0.320

M 3 (M}
2 X o 2 (My
8. 1.582Ta,, 73 4( )

My
Chapter 2
1. 8M, /1, 4.5Mp/l 2. 6My /1, 7.5Mp /1, IMy /[l
3. 5.33M,/! 4.4M, /1 5.2Mp/u(l —p)l
Chapter 3
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12.1.481,1.591 13.(3 —2/2) W

Chapter 4
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Chapter 5
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6. 1.36M,1%EI
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Chapter 6

1. 52.14,42.49 kN m

2. 0.124%04; My = My(1 —n?*/3) for neutral axis in flange,
My = My(1 — 51n*/3) for neutral axis in web

3. My =M, cos nnf2

5. 421.5,391.2kN

Indexes

Chapter 7

1.31.67,25kNm 2.8, =8, =46.67kNm
3. Bl =62 =56kNm

Chapter 8

2.1.333,1.5 3.1364,15 4.16,106
5.135,1.5  6.7.322M,/1,8M,/1  7.1.371
8. 1.481 9. 1.829M,/1 10.0.138M,1% /EI
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