Remarks: See §3.1.7, page 64 till 68

Answers:

1. $R_x = -6 \text{ kN}$; $R_y = 0 \text{ kN}$; R = 6 kN

 $\alpha = 180^{\circ}$ (α is the angle that R makes with the positive x-axle) The line of action from R intersects the y-axle in y = +6 m

- 2. There's no resulting force (closed force polygon), but a resulting moment: $\Sigma T_z = +36 \text{ kNm}$
- 3. $R_x = -18 \text{ kN}$; $R_y = 0$; R = 18 kN $\alpha = 180^\circ$ (α is the angle that R makes with the positive x-axle) The line of action of R intersects the y-axle in y = +2 m
- 4. $R_x = 0$; $R_y = -10$ kN; R = 10 kN $\alpha = 270^\circ$ (α is the angle that R makes with the positive x-axle) The line of action of R intersects the x-axle in x = +3 m