Remarks: See §5.1, page 154 till 162

Answers: Forces in kN

1.
$$A_h = 0$$
; $A_v = 2.5 (\downarrow)$; $B_v = 2.5 (\uparrow)$

2.
$$A_h = 0$$
; $A_v = 2.5 (\downarrow)$; $B_v = 2.5 (\uparrow)$

3.
$$A_h = 0$$
; $A_v = 2.5 (\uparrow)$; $B_v = 2.5 (\downarrow)$

4.
$$A_h = 0$$
; $A_v = 2.5 (\downarrow)$; $B_v = 2.5 (\uparrow)$

5.
$$A_h = 0$$
; $A_v = 1.5 (\downarrow)$; $B_v = 1.5 (\uparrow)$

6.
$$A_h = 0$$
; $A_v = 1.5 (\downarrow)$; $B_v = 1.5 (\uparrow)$

7. The load creates an equilibrium system: $A_h = A_v = B_v = 0$

8.
$$A_h = 0$$
; $A_v = 1 (\downarrow)$; $B_v = 1 (\uparrow)$

Remarks:

The location of the couple has no influence to the size of the support reactions, see exercises 1, 2 and 4, and also 5 and 6.

Because of the couple the support reactions in A and B are of the same size and in opposite direction.