ANSWERS - VOLUME 1: EQUILIBRIUM

Chapter 5, Calculating Support Reactions and Interaction Forces

problem 5.8, page 192

Remarks: See §5.1, page 154 till 162

And the examples 4 and 5 on page 160 and 161

 $A_{\rm h} = 0$; $A_{\rm v} = 3 \, \rm kN \, (\uparrow)$; $B_{\rm v} = 1 \, \rm kN \, (\uparrow)$ 3a.

 $V_C = -1 \text{ kN}$; $M_C = +5 \text{ kNm}$

 $A_{\rm h} = 0$; $A_{\rm v} = 3 \, \rm kN \, (\uparrow)$; $B_{\rm v} = 1 \, \rm kN \, (\uparrow)$

 $A_{\rm b} = 0$; $A_{\rm v} = 6 \, \text{kN} \, (\uparrow)$; $B_{\rm v} = 8 \, \text{kN} \, (\uparrow)$

Hints:

When the support reactions are calculated the interaction forces in C can be found when you free the left or right part. There are three kinds of interaction forces working between rigidly connected parts.

3b. $V_C = -1 \text{ kN}$; $M_C = -3 \text{ kNm}$

 $A_{\rm h} = 0$; $A_{\rm v} = 8 \, \rm kN \, (\uparrow)$; $B_{\rm v} = 12 \, \rm kN \, (\uparrow)$ 4a.

2a.

2b.

5a.

 $V_C = +3 \text{ kN}$; $M_C = +24 \text{ kNm}$ 4b.

Forces in line with the beam. Out of the horizontal equilibrium it follows that these forces are zero in each of the cases.

Forces perpendicular to the beam, called V_C

A moment, called M_C

for V_C and M_C we've defined positive directions:

 $V_{\mathbf{C}}$ M_{C}

5b. $V_C = 0$; $M_C = +41 \text{ kNm}$

 $A_{\rm h} = 0$; $A_{\rm v} = 2 \, \text{kN} \, (\uparrow)$; $B_{\rm v} = 3 \, \text{kN} \, (\uparrow)$ 6a.

 $V_C = +3 \text{ kN}$; $M_C = +9 \text{ kNm}$ 6b.

 $A_{\rm h} = 0$; $A_{\rm v} = 2 \, \text{kN} \, (\downarrow)$; $B_{\rm v} = 1 \, \text{kN} \, (\uparrow)$ 7a.

 $V_C = +2 \text{ kN}$; $M_C = +8 \text{ kNm}$ 7b.

Answers:

 $A_{\rm h} = 0$; $A_{\rm v} = 2 \, \text{kN} \, (\uparrow)$; $B_{\rm v} = 2 \, \text{kN} \, (\uparrow)$ 1a.

 $V_C = +2 \text{ kN}$; $M_C = +6 \text{ kNm}$ 1b.

8a. $A_{\rm b} = A_{\rm v} = B_{\rm v} = 0$

8b. $V_C = -2 \text{ kN}$; $M_C = +6 \text{ kNm}$