ANSWERS - VOLUME 1: EQUILIBRIUM

Chapter 5, Calculating Support Reactions and Interaction Forces

problem 5.9, page 192

Remarks: See §5.1, page 154 till 162

And the examples 4 and 5 on page 160 and 161

Hints:

When the support reactions are calculated the interaction forces in C can be found when you free the left or right part. There are three kinds of interaction forces working between rigidly connected parts.

- Forces in line with the beam. Out of the horizontal equilibrium it follows that these forces are zero in each of the cases.
- Forces perpendicular to the beam, called $V_{\rm C}$
- A moment, called $M_{\rm C}$

for V_C and M_C we've defined positive directions:

$$V_{\rm C}$$
 $M_{\rm C}$

Answers:

1a.
$$A_{\rm h} = 0$$
; $A_{\rm v} = 5 \text{ kN } (\uparrow)$; $B_{\rm v} = 7 \text{ kN } (\downarrow)$

1b.
$$V_{\rm C} = +6 \text{ kN}$$
; $M_{\rm C} = -9 \text{ kNm}$

2a. $A_{\rm h} = 0$; $A_{\rm v} = 10 \text{ kN } (\uparrow)$; $B_{\rm v} = 4 \text{ kN } (\downarrow)$

2b.
$$V_{\rm C} = 0$$
; $M_{\rm C} = +12 \text{ kNm}$

3a.
$$A_h = 0$$
; $A_v = 5 \text{ kN } (\uparrow)$; $B_v = 4 \text{ kN } (\uparrow)$

3b.
$$V_{\rm C} = 0$$
; $M_{\rm C} = +6$ kNm

4a.
$$A_h = 0$$
; $A_v = 14 \text{ kN } (\uparrow)$; $B_v = 7 \text{ kN } (\uparrow)$

4b.
$$V_C = +1 \text{ kN}$$
; $M_C = +11 \text{ kNm}$

5a.
$$A_h = 0$$
; $A_v = 6 \text{ kN } (\uparrow)$; $B_v = 3 \text{ kN } (\downarrow)$

5b.
$$V_{\rm C} = +3 \text{ kN} ; M_{\rm C} = -5 \text{ kNm}$$

6a.
$$A_h = A_v = 0$$
; $B_v = 2 \text{ kN } (\uparrow)$

6b.
$$V_{\rm C} = +4 \text{ kN}$$
; $M_{\rm C} = +12 \text{ kNm}$

7a.
$$A_h = A_v = 0$$
; $B_v = 12 \text{ kN } (\uparrow)$

7b.
$$V_{\rm C} = -6 \text{ kN}$$
; $M_{\rm C} = -18 \text{ kNm}$

8a.
$$A_h = 0$$
; $A_v = 3 \text{ kN } (\uparrow)$; $B_v = 24 \text{ kN } (\uparrow)$

8b.
$$V_{\rm C} = +9 \text{ kN}$$
; $M_{\rm C} = -30 \text{ kNm}$