Remarks: See §5.1, page 154 till 162

Hints:

The horizontal support reaction in C follows directly from horizontal equilibrium. From the angle of the bar support in C you can find the vertical support reaction in C. The moment equilibrium about A or B gives you vertical support reactions in A and B

Answers:

1b.
$$A_v = 4 \text{ kN } (\uparrow)$$

 $B_v = 8 \text{ kN } (\uparrow)$
 $C_h = 9 \text{ kN } (\leftarrow); C_v = 12 \text{ kN } (\downarrow)$

1d. There're three forces working on beam AB. The lines of action of the three forces should go through one point, point C in this case. Secondly there should be a closed force polygon.

2b.
$$A_v = 6 \text{ kN } (\uparrow);$$

 $B_v = 6 \text{ kN } (\uparrow);$
 $C_h = 9 \text{ kN } (\leftarrow); C_v = 12 \text{ kN } (\downarrow)$

2d. There're three forces working on beam AB. The lines of action of the three forces should go through one point. Secondly there should be a closed force polygon.

3b.
$$A_v = 8 \text{ kN } (\uparrow);$$

 $B_v = 4 \text{ kN } (\uparrow);$
 $C_h = C_v = 0$

3d.A graphic check of the moment equilibrium isn't possible because all forces work in the same direction. Using a force polygon is possible.

4b.
$$A_v = 9 \text{ kN } (\uparrow);$$

 $B_v = 3 \text{ kN } (\uparrow)$
 $C_h = C_v = 0$

4d. Same answer as 3d

Last update: 27-04-07

ANSWERS - VOLUME 1: EQUILIBRIUM

Chapter 5, Calculating Support Reactions and Interaction Forces

problem 5.13, page 193

_

Last update: 27-04-07