Remarks: See §5.3, page 168 till 172

Answers: All forces in kN

Only the size of the interaction forces in S is given.

1.
$$A_h = 3 (\rightarrow); A_v = 4 (\uparrow); B_h = 3 (\leftarrow); B_v = 8 (\uparrow)$$

 $S_h = 3; S_v = 4$

2.
$$A_h = A_v = 0$$
; $B_h = 6$ (\leftarrow); $B_v = 12$ (\uparrow) $S_h = 6$; $S_v = 0$

3.
$$A_h = 3 (\leftarrow); A_v = 10 (\uparrow); B_h = 9 (\leftarrow); B_v = 14 (\uparrow)$$

 $S_h = 6; S_v = 2$

4.
$$A_h = 9 (\rightarrow); A_v = 18 (\uparrow); B_h = 9 (\leftarrow); B_v = 6 (\uparrow)$$

 $S_h = 9; S_v = 6$

5.
$$A_h = 6 (\rightarrow); A_v = 16 (\uparrow); B_h = 6 (\leftarrow); B_v = 0$$

 $S_h = 6; S_v = 0$

6.
$$A_h = 3 \ (\leftarrow); A_v = 2 \ (\downarrow); B_h = 5 \ (\leftarrow); B_v = 2 \ (\uparrow)$$

 $S_h = 3; S_v = 2$

7.
$$A_{\rm h} = 30 \ (\leftarrow); \ A_{\rm v} = 10 \ (\downarrow); \ B_{\rm h} = 10 \ (\leftarrow); \ B_{\rm v} = 10 \ (\uparrow)$$

 $S_{\rm h} = 10; \ S_{\rm v} = 10$

8.
$$A_h = 30 (\rightarrow)$$
; $A_v = 30 (\uparrow)$; $B_h = 30 (\leftarrow)$; $B_v = 50 (\uparrow)$
 $S_h = 30$; $S_v = 30$

9.
$$A_h = 35 (\leftarrow)$$
; $A_v = 30 (\downarrow)$; $B_h = 25 (\leftarrow)$; $B_v = 30 (\uparrow)$
 $S_h = 5$; $S_v = 30$