ANSWERS - VOLUME 1: EQUILIBRIUM

problem 5.20, page 197

Remarks: See §5.4, page 173 till 176

Answers: All forces in kN

The normal force in AB is positive as a tensile force.

Only the size of the interaction forces in S is given.

1a.
$$A_{\rm h} = 0$$
; $A_{\rm v} = 50 \ (\uparrow)$; $B_{\rm v} = 30 \ (\uparrow)$

4a.
$$A_v = 15 (\downarrow); B_h = 40 (\leftarrow); B_v = 15 (\uparrow)$$

1b.
$$N^{(AB)} = +15$$

4b.
$$N^{(AB)} = -28$$

1c.
$$S_h = 15$$
; $S_v = 30$

4c.
$$S_h = 12$$
; $S_v = 15$

2a.
$$A_h = 0$$
; $A_v = 25 (\uparrow)$; $B_v = 5 (\downarrow)$

5a.
$$A_h = 0$$
; $A_v = 40 (\uparrow)$; $B_v = 40 (\uparrow)$

2b.
$$N^{(AB)} = -5$$

5b.
$$N^{\text{(AB)}} = +24$$

2c.
$$S_h = S_v = 5$$
; $S_v = 30$

5c.
$$S_h = 24$$
; $S_v = 0$

3a.
$$A_h = 40 (\leftarrow); A_v = 15 (\downarrow); B_v = 15 (\uparrow)$$

6a.
$$A_h = 30 (\rightarrow); A_v = 10 (\uparrow); B_v = 10 (\downarrow)$$

3b.
$$N^{\text{(AB)}} = +12$$

6b.
$$N^{\text{(AB)}} = -16$$

3c.
$$S_h = 12$$
; $S_v = 15$

6c.
$$S_h = 4$$
; $S_v = 16$

See next page ▼

Chapter 5, Calculating Support Reactions and Interaction Forces

7a.
$$A_h = 30 (\leftarrow); A_v = 8 (\uparrow); B_v = 32 (\uparrow)$$

7b.
$$N^{\text{(AB)}} = +40$$

7d. See figure to the right for the forces on the isolated hinge S

8a.
$$A_v = 8 (\uparrow); B_h = 30 (\leftarrow); B_v = 32 (\uparrow)$$

8b.
$$N^{\text{(AB)}} = +10$$

8d. See figure to the right for the forces on the isolated hinge S

