Remarks: See §5.7, page 186 till 189

Answers: All forces in kN and moments in kNm

The normal force in a bar positive as a tensile force and negative as a compressive force

1a.
$$A_h = 9 \ (\leftarrow); A_v = 9 \ (\uparrow); B_h = 9 \ (\rightarrow); B_v = 3 \ (\downarrow)$$
1b. $N^{(a)} = +9\sqrt{2} = +12,73$

$$N^{(b)} = +6$$

$$N^{(c)} = +3\sqrt{10} = +9,49$$

2a.
$$A_h = 6 \ (\leftarrow); \ A_v = 6 \ (\uparrow); \ B_h = 6 \ (\rightarrow); \ B_v = 0$$

2b. $N^{(a)} = +6\sqrt{2} = +8,49$
 $N^{(b)} = +4$
 $N^{(c)} = +2\sqrt{10} = +6,32$

3a.
$$A_h = 3 \leftarrow 3$$
; $A_v = 3 \leftarrow 3$; $B_h = 3 \rightarrow 3$; $B_v = 3 \leftarrow 3$; $B_v = 3$; $B_v =$

4a.
$$A_h = 3 \ (\leftarrow); \ A_v = 3 \ (\uparrow); \ B_h = 3 \ (\leftarrow); \ B_v = 3 \ (\downarrow)$$
4b. $N^{(a)} = +3\sqrt{2} = +4,24$

$$N^{(b)} = +2$$

$$N^{(c)} = +\sqrt{10} = +3,16$$

Hints:

From the moment equilibrium about A you can find the horizontal support reaction in A. Because (a) is a two-force member you also know the vertical support reaction and the normal force $N^{(a)}$. $N^{(b)}$ and $N^{(c)}$ follow from the force equilibrium from the joint where bars (a), (b) and (c) join.