ANSWERS – VOLUME 1: EQUILIBRIUM

Chapter 6, Loads

Remarks: See §6.3.1, page 219 till 223 and example 4 on page 2	Answers:
Replace the distributed load by its resultant on the part where the	1a.
equilibrium is taken in consideration.	1b.
After calculating the support reactions the interaction forces in C follo	1c.
from the equilibrium of one of the parts.	2a.
Between rigidly connected parts you've three interaction forces:A force in line with the beam. From the horizontal equilibrium it	
• A force perpendicular to the beam, called $V_{\rm C}$ here.	
• A moment, called $M_{\rm C}$ here.	
The positive directions for $V_{\rm C}$ and $M_{\rm C}$	3c.
V _C M _C	
	4a.
	4b.
	4c.

s:

1a.	$A_{\rm h} = 0$; $A_{\rm v} = 2$ kN (\uparrow)
1b.	$B_{\rm v} = 6 \text{ kN} (\uparrow)$
1c.	$V_{\rm C} = -2 \text{ kN}; M_{\rm C} = +4 \text{ kNm}$
20	$4 = 0$, $4 = 0$, 1 , N (\uparrow)
2a.	$A_{\rm h} = 0$; $A_{\rm v} = 9$ kN (\uparrow)
2b.	$B_{\rm v} = 7 \text{ kN} (\uparrow)$
2c.	$V_{\rm C} = +4 \text{ kN}$; $M_{\rm C} = +6,5 \text{ kNm}$
3a.	$A_{\rm h} = 0$; $A_{\rm v} = 18$ kN (\uparrow)
3a. 3b.	$A_{\rm h} = 0$; $A_{\rm v} = 18$ kN (\uparrow) $B_{\rm v} = 6$ kN (\downarrow)
3b.	$B_{\rm v} = 6 \text{ kN} (\downarrow)$
3b.	$B_{\rm v} = 6 \text{ kN} (\downarrow)$
3b. 3c.	$B_{\rm v} = 6 \text{ kN} (\downarrow)$ $V_{\rm C} = -6 \text{ kN} ; M_{\rm C} = -3 \text{ kNm}$
3b. 3c. 4a.	$B_{\rm v} = 6 \text{ kN} (\downarrow)$ $V_{\rm C} = -6 \text{ kN}; M_{\rm C} = -3 \text{ kNm}$ $A_{\rm h} = 0; A_{\rm v} = 8 \text{ kN} (\uparrow)$