Remarks: See §6.3.1, page 219 till 223 and example 2 and 4 on page 223 and 226

Replace the distributed load by its resultant on the part where the equilibrium is taken in consideration.

After calculating the support reactions the interaction forces in C follow from the equilibrium of one of the parts.

Between rigidly connected parts you've three interaction forces:

- A force in line with the beam. From the horizontal equilibrium it follows that this force is always zero here.
- A force perpendicular to the beam, called $V_{\rm C}$ here.
- A moment, called $M_{\rm C}$ here.

The positive directions for $V_{\rm C}$ and $M_{\rm C}$

Answers:

In all cases R = 10.8 kN (\downarrow) with the line of action 8 m from A.

1a.	$A_{\rm h} = 0$; $A_{\rm v} = 3,6$ kN (\uparrow)
1b.	$B_{\rm v} = 7,2 {\rm kN} (\uparrow)$
1c.	$V_{\rm C} = +0.9 \text{ kN}$; $M_{\rm C} = +16.2 \text{ kNm}$
2a.	$A_{\rm h} = 0$; $A_{\rm v} = 5,4$ kN (\uparrow)
2b.	$B_{\rm v} = 5.4 {\rm kN} (\uparrow)$
2c.	$V_{\rm C} = +2,7 \text{ kN}; M_{\rm C} = +2,7 \text{ kNm}$
3a.	$A_{\rm h} = A_{\rm v} = 0$
3b.	$B_{\rm v} = 10,8 \text{ kN} (\uparrow)$
3c.	$V_{\rm C} = -1,2 \text{ kN}$; $M_{\rm C} = -1,6 \text{ kNm}$

Last update: 27-04-07