ANSWERS – VOLUME 1: EQUILIBRIUM

Chapter 6, Loads

Remarks: See §6.3.1, page 219 till 223 and example 2 on page 223

Replace the distributed load by its resultant on the part where the equilibrium is taken in consideration.

After calculating the support reactions the interaction forces in C follow from the equilibrium of one of the parts.

Between rigidly connected parts you've three interaction forces:

- A force in line with the beam. From the horizontal equilibrium it follows that this force is always zero here.
- A force perpendicular to the beam, called $V_{\rm C}$ here.
- A moment, called $M_{\rm C}$ here.

The positive directions for $V_{\rm C}$ and $M_{\rm C}$

Answers:

1a/b.
$$A_{\rm h} = 0$$
; $A_{\rm v} = 10$ kN (\uparrow); $B_{\rm v} = 2$ kN (\uparrow)
1c. $V_{\rm C} = -2$ kN; $M_{\rm C} = +6$ kNm

2a/b.
$$A_{\rm h} = 0$$
; $A_{\rm v} = 8$ kN (\uparrow); $B_{\rm v} = 4$ kN (\uparrow)
2c. $V_{\rm C} = -4$ kN; $M_{\rm C} = +12$ kNm

3a/b.
$$A_{\rm h} = 0$$
; $A_{\rm v} = B_{\rm v} = 18$ kN (\uparrow);
3c. $V_{\rm C} = -2$ kN; $M_{\rm C} = +22$ kNm

4a/b.
$$A_{\rm h} = 0$$
; $A_{\rm v} = 21$ kN (\uparrow); $B_{\rm v} = 24$ kN (\uparrow)
4c. $V_{\rm C} = +1$ kN; $M_{\rm C} = +31$ kNm

5a/b.
$$A_{\rm h} = 0$$
; $A_{\rm v} = 16$ kN (\uparrow); $B_{\rm v} = 16$ kN (\downarrow)
5c. $V_{\rm C} = -8$ kN; $M_{\rm C} = 0$

6a/b.
$$A_{\rm h} = 0$$
; $A_{\rm v} = 18$ kN (\uparrow); $B_{\rm v} = 36$ kN (\uparrow)
6c. $V_{\rm C} = +14$ kN; $M_{\rm C} = +50$ kNm

Last update: 27-04-07