Chapter 9, Trusses

Remarks: See §4.5.3, page 136 till 140 See §9.2.2, page 332 till 337

A necessary condition for a kinematically determinate structure: $n = r + v - e = r + s - 2k \ge 0$. After this men should check the bar configuration.

If n < 0 the truss is without a doubt kinematically indeterminate If n > 0 n is the degree of static indeterminacy

Hints:

Try to check if the truss is kinematically determinate by looking at self-containing triangles. Try to do this without formulas. Notice that all four rectangle shaped trusses are self-contained. Displacements are only possible by the supports.

Answers:

1a/b. see §4.5, page 130

1c. If the bar support is not used in the calculation for the truss: r = 2; s = 9; $k = 6 \rightarrow n = -1$; <u>ki</u>, There are only two supports instead of the necessary three

2a/b. see §4.5, page 130

2c. If the bar support is not used in the calculation for the truss: r = 4; s = 10; $k = 6 \rightarrow n = +2$; kd en si, There's one support reaction and one bar in the truss too much.

3a/b. see §4.5, page 130

3c. If the bar support is not used in the calculation for the truss: r = 3; s = 9; $k = 6 \rightarrow n = 0$; kd en sb

4a/b. see §4.5, page 130

4c. If the bar support is not used in the calculation for the truss: r = 3; s = 11; $k = 6 \rightarrow n = +2$; still ki, Three support reactions go through one point.

Last update: 27-04-07