Remarks: See §3.2.4, example 7, pages 114 till 115

Answers 3.26-1:

- a. $I_{yy} = 2,083 \times 10^9 \text{ mm}^4$; this is not a principal value
- b. $I_{zz} = 3{,}333 \times 10^9 \text{ mm}^4$; this is not a principal value
- c. $I_{yz} = 1.5 \times 10^9 \text{ mm}^4$

Answers 3.26-2:

- a. $I_{yy} = 52,2 \times 10^6 \text{ mm}^4$; this is a principal value
- b. $I_{zz} = 325 \times 10^6 \text{ mm}^4$; this is a principal value
- c. $I_{yz} = 0$

Answers 3.26-3:

- a. $I_{yy} = 110 \times 10^3 \text{ mm}^4$; this is a principal value
- b. $I_{zz} = 252,5 \times 10^3 \text{ mm}^4$; this is a principal value
- c. $I_{yz} = 0$

Explanation 3.26-1:

Location of the normal centre from the top-right corner of the crosssection:

$$y_{\rm C} = 350 \text{ mm} \text{ and } z_{\rm C} = 200 \text{ mm}$$

Explanation 3.26-2:

The NC is at the centre of the cross-section due to symmetry

Explanation 3.26-3:

Location of the normal centre from the top-right corner of the crosssection:

$$y_{\rm C} = 15 \text{ mm} \text{ and } z_{\rm C} = 22,5 \text{ mm}$$

Chapter 3, Cross-Sectional Properties

Answers 3.26-4:

- a. $I_{yy} = 319,167 \times 10^3 \text{ mm}^4$; this is not a principal value
- b. $I_{zz} = 372,5 \times 10^3 \text{ mm}^4$; this is not a principal value
- c. $I_{yz} = -87,5 \times 10^3 \text{ mm}^4$

Answers 3.26-5:

- a. $I_{yy} = 110 \times 10^3 \text{ mm}^4$; this is a principal value
- b. $I_{77} = 920 \times 10^3 \text{ mm}^4$; this is a principal value
- c. $I_{v_7} = 0$

Answers 3.26-6:

- a. $I_{yy} = 3,067 \times 10^9 \text{ mm}^4$; this is a principal value
- b. $I_{zz} = 6,667 \times 10^9 \text{ mm}^4$; this is a principal value
- c. $I_{yz} = 0$

Explanation 3.26-4:

Location of the normal centre from the bottom-right corner of the cross-section:

$$y_C = 39,167 \text{ mm en } z_C = -17,5 \text{ mm}$$

Explanation 3.26-5:

The NC is at the centre of the cross-section due to symmetry

Explanation 3.26-6:

First calculate the moments of inertia of the large rectangle then subtract the moments of inertia of the smaller square