ANSWERS - VOLUME2: STRESSES, STRAINS, DISPLACEMENTS

problem 4.028, page 242

Remarks: See §4.4, pages 168 till 170

See §4.5, pages 171 till 184

See §4.6, pages 184 till 186

Answers:

a.
$$e_7 = 40 \text{ mm}$$

c.
$$e_{z} = -40 \text{ mm}$$

a.
$$e_z = 40 \text{ mm}$$
 c. $e_z = -40 \text{ mm}$
b. $e_z = 80 \text{ mm}$ d. $e_z = -24 \text{ mm}$

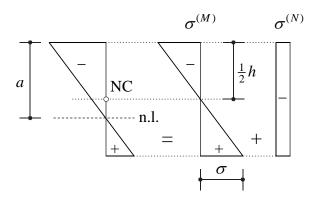
d.
$$e_z = -24 \text{ mm}$$

Explanation:

Draw the appropriate stress diagram with, for example, tension at the lower part of the cross-section

Decompose the diagram into $\sigma^{(M)}$ as a result of M_z and $\sigma^{(N)}$ as a result of N.

Take the maximum stress due to M_z as σ :


$$M_z = \frac{1}{6}bh^2\sigma$$

At the given value of a one can calculate the stress $\sigma_{\rm NC}$ in the normal centre:

$$N = bh\sigma_{\rm NC}$$

The centre of force is calculated by:

$$e_z = \frac{M_z}{N}$$

Extra explanation:

If one takes a as a variable then one can, from the stress diagram, derive for the general case that.

$$\sigma_{\rm NC} = -\frac{a - \frac{1}{2}h}{\frac{1}{2}h}\sigma = (1 - \frac{2a}{h})\sigma$$

and
$$N = b(h-2a)\sigma$$

Last update: 22-10-07