Remarks: See §4.4, pages 168 till 170 See §4.5, pages 171 till 184 See §4.7.4, pages 196 till 198

## Hint:

Draw the shear force diagram and the moment diagram

## Answers:

a.  $\sigma_{\rm max} = 25,5 \ {\rm N/mm^2}$  (tension at the bottom and compression at the top)

b.  $\sigma_{\text{max}} = 29,0 \text{ N/mm}^2$  (tension at the top and compression at the bottom)

## Explanation:

a. Support reactions 81,562 kN (  $\uparrow$  ) left and 39,375 kN (  $\uparrow$  ) right.

Support point moment: M = 13,05 kNm ( $\frown$ )

Maximum span-moment: M = 45,88 kNm ( $\smile$ )

This gives  $V_z = 0$ , which is 1,875 m left from the right support point.

The span-moment is greater:

$$\sigma_{\text{max}} = \pm \frac{(45,88 \times 10^6 \text{ Nmm})(150 \text{ mm})}{270 \times 10^6 \text{ mm}^4} = \pm 25,5 \text{ N/mm}^2$$

b. Support reactions 117,47 kN (↑) left and 39,15 kN (↑) right.

Support point moment: M = 52,20 kNm ( $\frown$ )

Maximum span-moment: M = 29,36 kNm ( $\bigcirc$ )

This gives  $V_z = 0$ , which is 1,5 m left from the right support point.

The support point moment is greater:

$$\sigma_{\text{max}} = \pm \frac{(52, 20 \times 10^6 \text{ Nmm})(150 \text{ mm})}{270 \times 10^6 \text{ mm}^4} = \pm 29, 0 \text{ N/mm}^2$$

Last update: 22-10-07