Remarks: See §5.4.2 example 1, pages 322 till 335

Answers:

- a. The normal centre NC is located 200 mm left from the wide flange.
- d. $\sigma_{\text{narrow flange}} = +61.8 \text{ N/mm}^2$

$$\sigma_{\text{wide flange}} = -37,2 \text{ N/mm}^2$$

e. $\tau_{\text{max:narrow flange}} = 3.0 \text{ N/mm}^2$

$$\tau_{\text{max;wide flange}} = 5,25 \text{ N/mm}^2$$

$$\tau_{\text{max};web} = 12,0 \text{ N/mm}^2$$

Explanation:

c. M_z varies linearly from -211,68 kNm to -13,23 kNm

$$V_{z} = +66,15 \text{ kN}$$
, constant

$$N = -66,15 \text{ kN}$$
, constant

d. $M_z = -145,3$ kN in this cross-section.

$$\sigma_{\text{narrow flange}} = \frac{(-66,15 \times 10^3 \text{ N})}{(15,75 \times 10^3 \text{ mm})} + \frac{(-145,53 \times 10^6 \text{ Nmm})(-400 \text{ mm})}{882 \times 10^6 \text{ mm}^6}$$

$$\sigma_{\text{wide flange}} = \frac{(-66,15 \times 10^3 \text{ N})}{(15,75 \times 10^3 \text{ mm})} + \frac{(-145,53 \times 10^6 \text{ Nmm})(200 \text{ mm})}{882 \times 10^6 \text{ mm}^6}$$

e. The shear stress distribution in the flanges varies linearly. It is maximum at the junction with the web:

$$\tau_{\text{max;narrow flange}} = \frac{(66,15 \times 10^3 \text{ N})(420 \times 10^3 \text{ mm}^3)}{(10,5 \text{ mm})(882 \times 10^6 \text{ mm}^4)} = 3 \text{ N/mm}^2$$

$$\tau_{\text{max;wide flange}} = \frac{(66,15 \times 10^3 \text{ N})(735 \times 10^3 \text{ mm}^3)}{(10,5 \text{ mm})(882 \times 10^6 \text{ mm}^4)} = 5,25 \text{ N/mm}^2$$

Stress distribution in the web is parabolic with the maximum at the height of the NC:

$$\tau_{\text{max;web}} = \frac{(66,15 \times 10^3 \text{ N})(1680 \times 10^3 \text{ mm}^3)}{(10,5 \text{ mm})(882 \times 10^6 \text{ mm}^4)} = 12,0 \text{ N/mm}^2$$

Last update: 10-11-07