Chapter 8, Deformation Due to Flexure

Answers:

b) Maple code:

> w:=x -> q/EI/48*x^3*(2*x-3*L); $w := x \rightarrow \frac{q x^3 (2x-3L)}{48 EI}$

> wp:=diff(w(x),x);

$$wp := \frac{q x^2 (2x - 3L)}{16 EI} + \frac{q x^3}{24 EI}$$

> wpp:=diff(wp,x);

$$wpp := \frac{q x (2 x - 3 L)}{8 EI} + \frac{q x^2}{4 EI}$$

> wppp:=diff(wpp,x);

wppp :=
$$\frac{q (2x - 3L)}{8 EI} + \frac{3 q x}{4 EI}$$

> wpppp:=diff(wppp,x);

$$wpppp := \frac{q}{EI}$$

Last update:16-02-08

b)(continued) If the beam is subject to a uniformly distributed load q, the differential equation is $EI \frac{d^4w}{dx^4} = q$. Differentiating the equation of the elastic curve four times should give $EI \frac{d^4w}{dx^4} = q$

В

d) $M(x) = -EIw'' = -\frac{q}{48} \left(24x^2 - 18lx \right)$ c) $V(x) = -EIw''' = -\frac{q}{48} (48x - 18l)$ $\frac{3}{8}ql$ q Μ $-\frac{q}{8}l^2$ А e) The beam can be supported by a clamp at A. The load in that case ſ $\frac{3}{4}l$ consists of the distributed load q, and a concentrated load of $\frac{5}{8}ql$ and a torque of $\frac{ql^2}{8}$ at B. V $-\frac{5}{8}ql$ 0 $\frac{3}{8}l$ l $\frac{3}{8}ql$

Last update:16-02-08